Bibliometric Analysis of Computational and Mathematical Models of Innovation and Technology in Business
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galende, J. Analysis of Technological Innovation from Business Economics and Management. Technovation 2006, 26, 300–311. [Google Scholar] [CrossRef]
- Chatzoglou, P.; Chatzoudes, D. The Role of Innovation in Building Competitive Advantages: An Empirical Investigation. Eur. J. Innov. Manag. 2017, 21, 44–69. [Google Scholar] [CrossRef]
- Ortiz-Villajos, J.M.; Sotoca, S. Innovation and Business Survival: A Long-Term Approach. Res. Policy 2018, 47, 1418–1436. [Google Scholar] [CrossRef]
- Heredia, J.A.; Geldes, C.; Kunc, M.H.; Flores, A. New Approach to the Innovation Process in Emerging Economies: The Manufacturing Sector Case in Chile and Peru. Technovation 2019, 79, 35–55. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Athreye, S.; Huang, C. The Paradox of Openness Revisited: Collaborative Innovation and Patenting by UK Innovators. Res. Policy 2016, 45, 1352–1361. [Google Scholar] [CrossRef] [Green Version]
- Frizzo-Barker, J.; Chow-White, P.A.; Adams, P.R.; Mentanko, J.; Ha, D.; Green, S. Blockchain as a Disruptive Technology for Business: A Systematic Review. Int. J. Inf. Manag. 2020, 51, 102029. [Google Scholar] [CrossRef]
- Visnjic, I.; Wiengarten, F.; Neely, A. Only the Brave: Product Innovation, Service Business Model Innovation, and Their Impact on Performance. J. Prod. Innov. Manag. 2016, 33, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Geldes, C.; Felzensztein, C.; Palacios-Fenech, J. Technological and Non-Technological Innovations, Performance and Propensity to Innovate across Industries: The Case of an Emerging Economy. Ind. Mark. Manag. 2017, 61, 55–66. [Google Scholar] [CrossRef]
- Heredia, J.; Castillo-Vergara, M.; Geldes, C.; Carbajal Gamarra, F.M.; Flores, A.; Heredia, W. How Do Digital Capabilities Affect Firm Performance? The Mediating Role of Technological Capabilities in the “New Normal”. J. Innov. Knowl. 2022, 7, 100171. [Google Scholar] [CrossRef]
- Shahzad, M.; Qu, Y.; Rehman, S.U.; Zafar, A.U. Adoption of Green Innovation Technology to Accelerate Sustainable Development among Manufacturing Industry. J. Innov. Knowl. 2022, 7, 100231. [Google Scholar] [CrossRef]
- Modgil, S.; Dwivedi, Y.K.; Rana, N.P.; Gupta, S.; Kamble, S. Has COVID-19 Accelerated Opportunities for Digital Entrepreneurship? An Indian Perspective. Technol. Soc. Chang. 2022, 175, 121415. [Google Scholar] [CrossRef]
- Mostaghel, R.; Oghazi, P.; Parida, V.; Sohrabpour, V. Digitalization Driven Retail Business Model Innovation: Evaluation of Past and Avenues for Future Research Trends. J. Bus. Res. 2022, 146, 134–145. [Google Scholar] [CrossRef]
- Chin, H.S.; Marasini, D.P.; Lee, D.H. Digital Transformation Trends in Service Industries. Serv. Bus. 2023, 17, 11–36. [Google Scholar] [CrossRef]
- Illia, L.; Colleoni, E.; Zyglidopoulos, S. Ethical Implications of Text Generation in the Age of Artificial Intelligence. Bus. Ethics Environ. Responsib. 2023, 32, 201–210. [Google Scholar] [CrossRef]
- Nasim, S.F.; Ali, M.R.; Kulsoom, U. Artificial Intelligence Incidents & Ethics A Narrative Review. Int. J. Technol. Innov. Manag. 2022, 2, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Lundvall, B. National Innovation Systems—Analytical Concept and Development Tool. Ind. Innov. 2007, 14, 95–119. [Google Scholar] [CrossRef]
- Asheim, B.T.; Gertler, M.S. The Geography of Innovation: Regional Innovation Systems. In The Oxford Handbook of Innovation; Oxford University Press: Oxford, UK, 2006; pp. 291–317. [Google Scholar]
- Porter, M.E. Clusters and the New. Economics of Competition; Harvard Business Review Boston: Brighton, MA, USA, 1998; Volume 76. [Google Scholar]
- Leydesdorff, L.; Etzkowitz, H. The Triple Helix as a Model for Innovation Studies. Sci. Public. Policy 1998, 25, 195–203. [Google Scholar]
- Boisier, G.; Hahn, K.; Geldes, C.; Klerkx, L. Unpacking the Precision Technologies for Adaptation of the Chilean Dairy Sector. A Structural-Functional Innovation System Analysis. J. Technol. Manag. Innov. 2021, 16, 56–66. [Google Scholar]
- Oh, D.-S.; Phillips, F.; Park, S.; Lee, E. Innovation Ecosystems: A Critical Examination. Technovation 2016, 54, 1–6. [Google Scholar] [CrossRef]
- OECD. Eurostat Oslo. Manual 2018; OECD: Paris, France, 2018. [Google Scholar]
- Markides, C.C. Business Model Innovation: What Can the Ambidexterity Literature Teach Us? Acad. Manag. Perspect. 2013, 27, 313–323. [Google Scholar] [CrossRef]
- Valdez-Juárez, E.L.; Castillo-Vergara, M. Technological Capabilities, Open Innovation, and Eco-Innovation: Dynamic Capabilities to Increase Corporate Performance of SMEs. J. Open. Innov. Technol. Mark. Complex. 2021, 7, 8. [Google Scholar] [CrossRef]
- Tidd, J.; Bessant, J. Innovation Management Challenges: From Fads to Fundamentals. Int. J. Innov. Manag. 2018, 22, 1840007. [Google Scholar] [CrossRef]
- Teece, D.J. Business Models, Business Strategy and Innovation. Long. Range Plann. 2010, 43, 172–194. [Google Scholar] [CrossRef]
- Canhoto, A.I.; Clear, F. Artificial Intelligence and Machine Learning as Business Tools: A Framework for Diagnosing Value Destruction Potential. Bus. Horiz. 2020, 63, 183–193. [Google Scholar] [CrossRef]
- Loureiro, S.M.C.; Guerreiro, J.; Tussyadiah, I. Artificial Intelligence in Business: State of the Art and Future Research Agenda. J. Bus. Res. 2021, 129, 911–926. [Google Scholar] [CrossRef]
- Groesser, S.N.; Jovy, N. Business Model Analysis Using Computational Modeling: A Strategy Tool for Exploration and Decision-Making. J. Manag. Control. 2016, 27, 61–88. [Google Scholar] [CrossRef]
- Ajah, I.A.; Nweke, H.F. Big Data and Business Analytics: Trends, Platforms, Success Factors and Applications. Big Data Cogn. Comput. 2019, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Sestino, A.; Prete, M.I.; Piper, L.; Guido, G. Internet of Things and Big Data as Enablers for Business Digitalization Strategies. Technovation 2020, 98, 102173. [Google Scholar] [CrossRef]
- Agar, J. What Is Technology? Ann. Sci. 2020, 77, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Schatzberg, E. Technology: Critical History of a Concept; University of Chicago Press: Chicago, IL, USA, 2019; ISBN 022658402X. [Google Scholar]
- Barley, S.R. Technology, Power, and the Social Organization of Work: Towards a Pragmatic Theory of Skilling and Deskilling. Res. Sociol. Organ. 1988, 6, 80. [Google Scholar]
- Orlikowski, W.J.; Scott, S. V Sociomateriality: Challenging the Separation of Technology, Work and Organization. Acad. Manag. Ann. 2008, 2, 433–474. [Google Scholar] [CrossRef]
- Peña, N.; de Arroyabe, J.F.; de Arroyabe, J.C.F. Business Cooperation: From Theory to Practice; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 0230554695. [Google Scholar]
- Crossan, M.M.; Apaydin, M. A Multi-Dimensional Framework of Organizational Innovation: A Systematic Review of the Literature. J. Manag. Stud. 2010, 47, 1154–1191. [Google Scholar] [CrossRef]
- Damanpour, F.; Schneider, M. Phases of the Adoption of Innovation in Organizations: Effects of Environment, Organization and Top Managers1. Br. J. Manag. 2006, 17, 215–236. [Google Scholar] [CrossRef]
- Sood, A.; Tellis, G.J. Technological Evolution and Radical Innovation. J. Mark. 2005, 69, 152–168. [Google Scholar] [CrossRef]
- Fagerberg, J. Innovation: A Guide to the Literature. In The Oxford Handbook of Innovation; Fagerberg, J., Mowery, D.C., Eds.; Oxford University Press: Oxford, UK, 2006; Chapter 1; pp. 1–26. ISBN 9780199286805. [Google Scholar] [CrossRef]
- Thompson, V.A. Bureaucracy and Innovation. Adm. Sci. Q. 1965, 10, 1–20. [Google Scholar] [CrossRef]
- Baregheh, A.; Rowley, J.; Sambrook, S. Towards a Multidisciplinary Definition of Innovation. Manag. Decis. 2009, 47, 1323–1339. [Google Scholar] [CrossRef]
- Spieth, P.; Schneckenberg, D.; Ricart, J.E. Business Model Innovation–State of the Art and Future Challenges for the Field. RD Manag. 2014, 44, 237–247. [Google Scholar] [CrossRef]
- Lee, Y.; Kozar, K.A.; Larsen, K.R.T.; Lee, Y.; Kozar, K.A.; Lee, Y.; Kozar, K.A.; Larsen, K.R.T. The Technology Acceptance Model: Past, Present, and Future. Commun. Assoc. Inf. Syst. 2003, 12, 752–780. [Google Scholar] [CrossRef]
- Myung, J.I.; Tang, Y.; Pitt, M.A. Evaluation and Comparison of Computational Models. Methods Enzym. 2009, 454, 287–304. [Google Scholar]
- Hunt, C.A.; Ropella, G.E.P.; Park, S.; Engelberg, J. Dichotomies between Computational and Mathematical Models. Nat. Biotechnol. 2008, 26, 737–738. [Google Scholar] [CrossRef]
- Humphreys, P. Computational Models. Philos. Sci. 2002, 69, S1–S11. [Google Scholar] [CrossRef]
- Kennedy, M.C.; O’Hagan, A. Bayesian Calibration of Computer Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2001, 63, 425–464. [Google Scholar] [CrossRef]
- Goldstone, R.L.; Janssen, M.A. Computational Models of Collective Behavior. Trends Cogn. Sci. 2005, 9, 424–430. [Google Scholar] [CrossRef]
- Pitt, M.A.; Myung, I.J.; Zhang, S. Toward a Method of Selecting among Computational Models of Cognition. Psychol. Rev. 2002, 109, 472–491. [Google Scholar] [CrossRef]
- Frank, M.; Drikakis, D.; Charissis, V. Machine-Learning Methods for Computational Science and Engineering. Computation 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Merigó, J.M.; Pedrycz, W.; Weber, R.; de la Sotta, C. Fifty Years of Information Sciences: A Bibliometric Overview. Inf. Sci. 2018, 432, 245–268. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Koseoglu, M.A.; Rahimi, R.; Okumus, F.; Liu, J. Bibliometric Studies in Tourism. Ann. Tour. Res. 2016, 61, 180–198. [Google Scholar] [CrossRef]
- Castillo-Vergara, M.; Quispe-fuentes, I.; Poblete, J. Technological Innovation in the Food Industry: A Bibliometric Analysis. Eng. Econ. 2021, 32, 197–209. [Google Scholar] [CrossRef]
- Wallin, M.W. The Bibliometric Structure of Spin-off Literature. Innovation 2012, 14, 162–177. [Google Scholar] [CrossRef]
- Liao, C.H. How to Conduct a Multi-Item Research Assessment in Bibliometric Studies? Theoretical Support and Empirical Evidence. Online Inf. Rev. 2015, 39, 574–587. [Google Scholar] [CrossRef]
- Urrútia, G.; Bonfill, X. Declaración PRISMA: Una Propuesta Para Mejorar La Publicación de Revisiones Sistemáticas y Metaanálisis. Med. Clin. 2010, 135, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Tello Gamarra, J.; Machado Leo, R.; Silva Avila, A.M.; Wendland, J. Innovation Studies in Latin America: A Bibliometric Analysis. J. Technol. Manag. Innov. 2018, 13, 24–36. [Google Scholar] [CrossRef] [Green Version]
- González-Alcaide, G. Bibliometric Studies Outside the Information Science and Library Science Field: Uncontainable or Uncontrollable? Scientometrics 2021, 126, 6837–6870. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Akbari, M.; Khodayari, M.; Khaleghi, A.; Danesh, M.; Padash, H. Technological Innovation Research in the Last Six Decades: A Bibliometric Analysis. Eur. J. Innov. Manag. 2020, 24, 1806–1831. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, L.; Liu, Z. Literature Trend Identification of Sustainable Technology Innovation: A Bibliometric Study Based on Co-Citation and Main Path Analysis. Sustainability 2020, 12, 1–20. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, X.H.; Liu, R.; He, Y.; Wu, S. Reviewing the Domain of Technology and Innovation Management: A Visualizing Bibliometric Analysis. Sage Open 2019, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Shum, V.; Park, A.; Maine, E.; Pitt, L.F. A Bibliometric Study of Research-Technology Management, 1998–2017: An Analysis of 20 Years of RTM Articles Offers a Perspective on Trends and Evolutions in the Journal’s Content and in the Field of Innovation Management. Res. Technol. Manag. 2019, 62, 34–43. [Google Scholar] [CrossRef]
- Li, M.; Porter, A.L.; Suominen, A. Insights into Relationships between Disruptive Technology/Innovation and Emerging Technology: A Bibliometric Perspective. Technol. Soc. Chang. 2018, 129, 285–296. [Google Scholar] [CrossRef]
- Ferreira, F.A.F. Mapping the Field of Arts-Based Management: Bibliographic Coupling and Co-Citation Analyses. J. Bus. Res. 2018, 85, 348–357. [Google Scholar] [CrossRef]
- Ruiz-Alba, J.L.; Guzman-Parra, V.F.; Oblitas, J.R.V.; Mediano, J.M. Entrepreneurial Intentions: A Bibliometric Analysis. J. Small Bus. Enterp. Dev. 2020, 28, 121–133. [Google Scholar] [CrossRef]
- Rons, N. Bibliometric Approximation of a Scientific Specialty by Combining Key Sources, Title Words, Authors and References. J. Inf. 2018, 12, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Wang, L. Creativity as a Pragmatic Moral Tool. J. Bus. Res. 2019, 96, 1–13. [Google Scholar] [CrossRef]
- Kraus, S.; Mahto, R.V.; Walsh, S.T. The importance of literature reviews in small business and entrepreneur-ship research. J. Small Bus. Manag. 2023, 61, 1095–1106. [Google Scholar] [CrossRef]
- Pan, X.; Yan, E.; Cui, M.; Hua, W. Examining the Usage, Citation, and Diffusion Patterns of Bibliometric Mapping Software: A Comparative Study of Three Tools. J. Inf. 2018, 12, 481–493. [Google Scholar] [CrossRef]
- Cadavid-Higuita, L.; Awad, G.; Franco-Cardona, C.J. Análisis Bibliométrico Del Campo Modelado de Difusión de Innovaciones. Estud. Gerenc. 2012, 28, 213–236. [Google Scholar] [CrossRef] [Green Version]
- López-Fernández, M.C.; Serrano-Bedia, A.M.; Pérez-Pérez, M. Entrepreneurship and Family Firm Research: A Bibliometric Analysis of An Emerging Field. J. Small Bus. Manag. 2016, 54, 622–639. [Google Scholar] [CrossRef]
- Norris, M.; Oppenheim, C. Comparing Alternatives to the Web of Science for Coverage of the Social Sciences’ Literature. J. Inf. 2007, 1, 161–169. [Google Scholar] [CrossRef]
- Baier-Fuentes, H.; Merigó, J.M.; Amorós, J.E.; Gaviria-Marin, M. International Entrepreneurship: A Bibliometric Overview. Int. Entrep. Manag. J. 2019, 15, 385–429. [Google Scholar] [CrossRef]
- Castillo-Vergara, M.; Alvarez-Marin, A.; Placencio-Hidalgo, D. A Bibliometric Analysis of Creativity in the Field of Business Economics. J. Bus. Res. 2018, 85, 1–9. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.P.; Laville, F. Co-Word Analysis as a Tool for Describing the Network of Interactions between Basic and Technological Research: The Case of Polymer Chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Velez-Estevez, A.; García-Sánchez, P.; Moral-Munoz, J.A.; Cobo, M.J. Why Do Papers from International Collaborations Get More Citations? A Bibliometric Analysis of Library and Information Science Papers. Scientometrics 2022, 127, 7517–7555. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cobo, M.J.; Pérez, I.J.; Cabrerizo, F.J.; Alonso, S.; Herrera-Viedma, E. Co-Words Analysis of the Last Ten Years of the Fuzzy Decision Making Research Area. In Advances in Fuzzy Logic and Technology 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 497–508. [Google Scholar]
- Vogel, B.; Reichard, R.J.; Batistič, S.; Černe, M. A Bibliometric Review of the Leadership Development Field: How We Got Here, Where We Are, and Where We Are Headed. Leadersh. Q. 2020, 32, 101381. [Google Scholar] [CrossRef]
- De Solla Price, D.; Gürsey, S. Studies in Scientometrics I Transience and Continuance in Scientific Authorship. Ciência Da Inf. 1975, 4, 27–40. [Google Scholar]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. SciMAT: A New Science Mapping Analysis Software Tool. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1609–1630. [Google Scholar] [CrossRef]
- Cricelli, L.; Grimaldi, M.; Vermicelli, S. Crowdsourcing and Open Innovation: A Systematic Literature Review, an Integrated Framework and a Research Agenda. Rev. Manag. Sci. 2022, 16, 1269–1310. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Philos. Rhetor. 1977, 10. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.L.; Higgins, C.A.; Howell, J.M. Personal Computing: Toward a Conceptual Model of Utilization. MIS Q. 1991, 15, 125–142. [Google Scholar] [CrossRef]
- Triandis, H.C. Attitude and Attitude Change; Wiley Foundations of Social Psychology Series; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Desanctis, G.; Poole, M.S. Capturing the Complexity in Advanced Technology Use: Adaptive Structuration Theory. Organ. Sci. 1994, 5, 121–147. [Google Scholar] [CrossRef] [Green Version]
- den Hond, F.; Moser, C. Useful Servant or Dangerous Master? Technology in Business and Society Debates. Bus. Soc. 2023, 62, 87–116. [Google Scholar] [CrossRef]
- Das, S. A question of wines and bottles? Examining new technology and competition between new technologies. Acad. Manag. Proc. 1994, 1994, 335–339. [Google Scholar] [CrossRef]
- Drejer, A. The Discipline of Management of Technology, Based on Considerations Related to Technology. Technovation 1997, 17, 253–265. [Google Scholar] [CrossRef]
- Broekel, T. Using Structural Diversity to Measure the Complexity of Technologies. PLoS ONE 2019, 14, e0216856. [Google Scholar] [CrossRef] [Green Version]
- Castells, M. La Era de La Información (Vol. 1): Economía, Sociedad y Cultura; La sociedad real; Alianza Editorial: Madrid, Spain, 2005. [Google Scholar]
- Grint, K.; Woolgar, S. The Machine at Work: Technology, Work and Organization; John Wiley & Sons: New York, NY, USA, 2013; ISBN 0745669174. [Google Scholar]
- Badawy, A.M. Technology Management Simply Defined: A Tweet plus Two Characters. J. Eng. Technol. Manag. 2009, 26, 219–224. [Google Scholar] [CrossRef]
- Friedland, R.; Arjaliès, D.-L. Putting Things in Place: Institutional Objects and Institutional Logics. In On Practice and Institution: New Empirical Directions; Lounsbury, M., Anderson, D.A., Spee, P., Eds.; Emerald Publishing Limited: Bingley, UK, 2021; Volume 71, pp. 45–86. ISBN 978-1-80043-416-5, 978-1-80043-417-2. [Google Scholar]
- Zuboff, S. Big Other: Surveillance Capitalism and the Prospects of an Information Civilization. J. Inf. Technol. 2015, 30, 75–89. [Google Scholar] [CrossRef]
- West, S.M. Data Capitalism: Redefining the Logics of Surveillance and Privacy. Bus. Soc. 2019, 58, 20–41. [Google Scholar] [CrossRef]
- Latour, B. Reassembling the Social: An Introduction to Actor-Network-Theory; Oup Oxford: Oxford, UK, 2007; ISBN 0191622893. [Google Scholar]
- Law, J.; Hassard, J. Actor Network Theory and After; Wiley-Blackwell: Hoboken, NJ, USA, 1999. [Google Scholar]
- Koul, S.; Eydgahi, A. Utilizing Technology Acceptance Model (TAM) for Driverless Car Technology Adoption. J. Technol. Manag. Innov. 2018, 13, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Shi, F.; Zhou, F.; Liu, H.; Chen, L.; Ning, H. Survey and Tutorial on Hybrid Human-Artificial Intelligence. Tsinghua Sci. Technol. 2023, 28, 486–499. [Google Scholar] [CrossRef]
- Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How Artificial Intelligence Will Change the Future of Marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-S.; John, A.; Hsu, H.-C.; Hsiung, P.-A. SPChain: A Smart and Private Blockchain-Enabled Framework for Combining GDPR-Compliant Digital Assets Management with AI Models. IEEE Access 2022, 10, 130424–130443. [Google Scholar] [CrossRef]
Types of Indicators | Indicators |
---|---|
Activity indicators | Number of publications |
Number of contributing authors | |
Number of journals | |
Number of countries | |
Quality indicators | Total number of citations received |
Average number of citations per publication | |
Impact factor | |
H-Index | |
Relationship indicators | Co-citation |
Bibliographic Coupling | |
Co-word | |
Co-authorship | |
Degree of centrality |
Theme | Centrality | Density | h-Index | Citations | Nodes | Docs |
---|---|---|---|---|---|---|
Innovation | 27.9 | 3.84 | 83 | 25,966 | Capabilities | 56 |
Diffusion | 97 | |||||
Firms | 85 | |||||
Innovation | 430 | |||||
Model | 929 | |||||
Networks | 82 | |||||
Organizations | 122 | |||||
Patents | 20 | |||||
Product | 45 | |||||
Strategy | 139 | |||||
Information Technology | 24.46 | 2.67 | 79 | 43,285 | Attitudes | 68 |
Behavioral Intention | 23 | |||||
Communication | 61 | |||||
Computers | 139 | |||||
Computer-Mediated Communication | 92 | |||||
Determinants | 130 | |||||
Impact | 267 | |||||
Information Technology | 367 | |||||
Social Influence | 20 | |||||
Demand | 8.31 | 3.99 | 18 | 2638 | Demand | 84 |
Elasticities | 12 | |||||
Inequality | 37 | |||||
Investment | 75 | |||||
New-Product | 4 | |||||
Personal-Computers | 18 | |||||
Price | 53 | |||||
Price-Indexes | 7 | |||||
Task | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Vergara, M.; Muñoz-Cisterna, V.; Geldes, C.; Álvarez-Marín, A.; Soto-Marquez, M. Bibliometric Analysis of Computational and Mathematical Models of Innovation and Technology in Business. Axioms 2023, 12, 631. https://doi.org/10.3390/axioms12070631
Castillo-Vergara M, Muñoz-Cisterna V, Geldes C, Álvarez-Marín A, Soto-Marquez M. Bibliometric Analysis of Computational and Mathematical Models of Innovation and Technology in Business. Axioms. 2023; 12(7):631. https://doi.org/10.3390/axioms12070631
Chicago/Turabian StyleCastillo-Vergara, Mauricio, Víctor Muñoz-Cisterna, Cristian Geldes, Alejandro Álvarez-Marín, and Mónica Soto-Marquez. 2023. "Bibliometric Analysis of Computational and Mathematical Models of Innovation and Technology in Business" Axioms 12, no. 7: 631. https://doi.org/10.3390/axioms12070631
APA StyleCastillo-Vergara, M., Muñoz-Cisterna, V., Geldes, C., Álvarez-Marín, A., & Soto-Marquez, M. (2023). Bibliometric Analysis of Computational and Mathematical Models of Innovation and Technology in Business. Axioms, 12(7), 631. https://doi.org/10.3390/axioms12070631