A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters
Abstract
:1. Introduction
2. Some Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Krnić, M.; Pečarić, J. Extension of Hilbert’s inequality. J. Math. Anal. Appl. 2006, 324, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.C. On a generalization of Hilbert double series theorem. J. Nanjing Univ. Math. Biquarterly 2001, 18, 145–152. [Google Scholar]
- Adiyasuren, V.; Batbold, T.; Azar, L.E. A new discrete Hilbert-type inequality involving partial sums. J. Inequalities Appl. 2019, 127, 2019. [Google Scholar] [CrossRef]
- Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
- Yang, B.C.; Debnath, L. On the extended Hardy–Hilbert’s inequality. J. Math. Anal. Appl. 2002, 272, 187–199. [Google Scholar] [CrossRef]
- Krnić, M.; Pečarić, J. General Hilbert’s and Hardy’s inequalities. Math. Inequalities Appl. 2005, 8, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Perić, I.; Vuković, P. Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 2011, 5, 33–43. [Google Scholar] [CrossRef]
- Huang, Q.L. A new extension of Hardy-Hilbert-type inequality. J. Inequalities Appl. 2015, 2015, 397. [Google Scholar] [CrossRef]
- He, B. A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 2013, 431, 889–902. [Google Scholar] [CrossRef]
- Xu, J.S. Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 2007, 36, 63–76. [Google Scholar]
- Xie, Z.T.; Zeng, Z.; Sun, Y.F. A new Hilbert-type inequality with the homogeneous kernel of degree-2. Adv. Appl. Math. Sci. 2013, 12, 391–401. [Google Scholar]
- Zeng, Z.; Raja Rama Gandhi, K.; Xie, Z.T. A new Hilbert-type inequality with the homogeneous kernel of degree-2 and with the integral. Bull. Math. Sci. Appl. 2014, 3, 11–20. [Google Scholar]
- Xin, D.M. A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 2010, 30, 70–74. [Google Scholar]
- Azar, L.E. The connection between Hilbert and Hardy inequalities. J. Inequalities Appl. 2013, 452, 2013. [Google Scholar] [CrossRef] [Green Version]
- Adiyasuren, V.; Batbold, T.; Krnić, M. Hilbert–type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 2015, 18, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.H.; Yang, B.C. An extended Hardy-Hilbert’s inequality with parameters and applications. J. Math. Inequalities 2021, 15, 1375–1389. [Google Scholar] [CrossRef]
- Hong, Y.; Wen, Y. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 2016, 37A, 329–336. [Google Scholar]
- Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernel and application. J. Jilin Univ. (Sci. Ed.) 2017, 55, 189–194. [Google Scholar]
- Hong, Y.; Huang, Q.L.; Yang, B.C.; Liao, J.Q. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. J. Inequalities Appl. 2017, 2017, 316. [Google Scholar] [CrossRef]
- Chen, Q.; He, B.; Hong, Y.; Li, Z. Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 2020, 7414861. [Google Scholar] [CrossRef]
- He, B.; Hong, Y.; Chen, Q. The equivalent parameter conditions for constructing multiple integral half-discrete Hilbert-type inequalities with a class of non-homogeneous kernels and their applications. Open Math. 2021, 19, 400–411. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, Q.L.; Chen, Q. The parameter conditions for the existence of the Hilbert-type multiple integral inequality and its best constant factor. Ann. Funct. Anal. 2020, 12, 7. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Q. Equivalent parameter conditions for the construction of Hilbert-type integral inequalities with a class of non-homogeneous kernels. J. S. China Norm. Univ. (Nat. Sci. Ed.) 2020, 52, 124–128. [Google Scholar]
- Hong, Y.; Chen, Q. Research Progress and Applications of Hilbert-Type Series Inequalitie. J. Jilin Univ. (Sci. Ed.) 2021, 59, 1131–1140. [Google Scholar]
- Hong, H.; Chen, Q.; Wu, C.Y. The best matching parameters for semi-discrete Hilbert-type inequality with quasi-homogeneous kernel. Math. Appl. 2021, 34, 779–785. [Google Scholar]
- Hong, Y.; He, B. The optimal matching parameter of half-discrete Hilbert-type multiple integral inequalities with non-homogeneous kernels and applications. Chin. Quart. J. Math. 2021, 36, 252–262. [Google Scholar]
- Luo, R.; Yang, B.C.; Huang, X.S. A reverse extended Hardy–Hilbert’s inequality with parameters. J. Inequalities Appl. 2023, 2023, 58, Springer Science and Business Media LLC. [Google Scholar] [CrossRef]
- Nave, O. Modification of Semi-Analytical Method Applied System of ODE. Mod. Appl. Sci. 2020, 14, 75, Canadian Center of Science and Education. [Google Scholar] [CrossRef]
- Yang, B.C.; Debnath, L. Discrete Hilbert-Type Inequalities; Bentham Science Publishers Ltd.: Dubai, United Arab Emirate, 2011. [Google Scholar]
- Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Yang, B. A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters. Axioms 2023, 12, 678. https://doi.org/10.3390/axioms12070678
Liao J, Yang B. A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters. Axioms. 2023; 12(7):678. https://doi.org/10.3390/axioms12070678
Chicago/Turabian StyleLiao, Jianquan, and Bicheng Yang. 2023. "A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters" Axioms 12, no. 7: 678. https://doi.org/10.3390/axioms12070678
APA StyleLiao, J., & Yang, B. (2023). A New Reverse Extended Hardy–Hilbert’s Inequality with Two Partial Sums and Parameters. Axioms, 12(7), 678. https://doi.org/10.3390/axioms12070678