Solving Integral Equations via Fixed Point Results Involving Rational-Type Inequalities
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Applications
4.1. Existence of a Unique Common Solution to the System of Urysohn Integral Equations
4.2. Existence of a Unique Common Solution to the System of Volterra–Hammerstein Integral Equations:
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les oprations dans les ensembles abstraits et leurs applications aux equatins integrales. Fund Math. 1922, 3, 133181. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–27. [Google Scholar]
- Ege, O. Complex valued rectangular b-metric spaces and an application to linear equations. J. Nonlinear Sci. Appl. 2015, 8, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Rezazgui, A.Z.; Tallafha, A.A.; Shatanawi, W. Common fixed point results via Aν-α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space. AIMS Math. 2023, 8, 7225–7241. [Google Scholar] [CrossRef]
- Shatanawi, W.; Pitea, A.; Lazovic, R. Contration conditions usingcomparison functionson b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 135. [Google Scholar] [CrossRef] [Green Version]
- Shantanawi, W. Fixed and common fixed for mapping satisfying some nonlinear contraction in b-metricspaces. J. Math. Anal. 2016, 7, 1–12. [Google Scholar]
- Aleksic, S.; Kadelburg, Z.; Mitrovic, Z.D. A new survey: Cone metric spaces. arXiv 2018, arXiv:1805.04795. [Google Scholar]
- George, R.; Nabwey, H.A.; Rajagopalan, R. Rectangular cone b-metric spaces over Banach algebra and contraction principle. Fixed Point Theory Appl. 2017, 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Hung, H.; Deng, G.; Radenovi, S. Some topological properties and fixed point results in cone metric spaces over banach algebras. Positiviy 2019, 13, 21–34. [Google Scholar] [CrossRef]
- Joshi, M.; Tomar, A.; Abdeljawad, T. On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces. AIMS Math. 2023, 8, 4407–4441. [Google Scholar] [CrossRef]
- Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric space. Numer. Funct. Anal. Optim. 2011, 32, 243–253. [Google Scholar] [CrossRef]
- Rao, K.P.R.; Swamy, P.R.; Prasad, J.R. A common fixed point theorem in complex valued b-metric spaces. Bull. Math. Stat. Res. 2013, 1, 1–8. [Google Scholar]
- Berrah, K.; Aliouche, A.; Oussaeif, T. Common fixed point theorems under patas contraction in complex valued metric spaces and an application to integral equations. Bol. Soc. Mat. Mex. 2019, 26, 2296–4495. [Google Scholar]
- Shatanawi, W.; Shatnawi, T.A. New fixed point results in controlled metric type spaces based on new contractive conditions. AIMS Math. 2023, 8, 9314–9330. [Google Scholar] [CrossRef]
- Dubey, A.K.; Tripathi, M. Common fixed point theorem in complex valued b-metric space for rational contractions. J. Inf. Math. Sci. 2015, 7, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Berrah, K.; Aliouche, A.; Oussaeif, T.E. Applications and theorem on common fixed point in complex valued b-metric space. AIMS Math. 2019, 4, 1019–1033. [Google Scholar] [CrossRef]
- Sanatammappa, N.P.; Krishnakumar, R.; Dinesh, K. Some results in b-metric spaces. Malaya J. Matematik. 2021, 9, 539–541. [Google Scholar] [CrossRef]
- Cobaz, S.; Czerwik, S. The completion of generalized b-metric spaces and fixed point. Fixed Point Theory. 2020, 21, 133–150. [Google Scholar]
- Sintunavarat, W.; Cho, Y.J.; Kumam, P. Urysohn integral equations approach by common fixed points in Complex-valued metric spaces. Adv. Differ. Equ. 2013, 2013, 49. [Google Scholar] [CrossRef] [Green Version]
- Rashwan, R.A.; Aaleh, S.M. Solution of nonlinear integral equations via fixed point theorems in G-metric spaces. Int. J. Appl. Math. Res. 2014, 3, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Pathak, H.K.; Khan, M.S.; Tiwari, R. A common fixed point theorem and its application to nonlinear integral equations. Comput. Math. Appl. 2007, 53, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Zada, M.B.; Sarwar, M.; Raadenovic, S. Existance of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces. J. Inequalities Appl. 2017, 2017, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Singh, D.; Badal, A.; Joshi, V. Fixed points theorems in complex valued metric spaces. J. Egypt. Math. Soc. 2016, 24, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Mukheimer, A.A. Some Common Fixed Point Theorem in Complex Valued b-Metric Spaces. Sci. World J. 2014, 2014, 587825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, S.C.; Arora, S. Mathematical Analysis, 4th ed.; University of Dehli: Dehli, India, 2010. [Google Scholar]
- Brown, J.W.; Churchill, R.V. Complex Variables and Applications, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Connor, J.; Grosse-Erdmann, K.G. Sequential Definition of Continuity For Real Functions. Rocky Mt. J. Math. 2003, 33, 93–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah Khayyam, S.; Sarwar, M.; Khan, A.; Mlaiki, N.; Azmi, F.M. Solving Integral Equations via Fixed Point Results Involving Rational-Type Inequalities. Axioms 2023, 12, 685. https://doi.org/10.3390/axioms12070685
Shah Khayyam S, Sarwar M, Khan A, Mlaiki N, Azmi FM. Solving Integral Equations via Fixed Point Results Involving Rational-Type Inequalities. Axioms. 2023; 12(7):685. https://doi.org/10.3390/axioms12070685
Chicago/Turabian StyleShah Khayyam, Syed, Muhammad Sarwar, Asad Khan, Nabil Mlaiki, and Fatima M. Azmi. 2023. "Solving Integral Equations via Fixed Point Results Involving Rational-Type Inequalities" Axioms 12, no. 7: 685. https://doi.org/10.3390/axioms12070685
APA StyleShah Khayyam, S., Sarwar, M., Khan, A., Mlaiki, N., & Azmi, F. M. (2023). Solving Integral Equations via Fixed Point Results Involving Rational-Type Inequalities. Axioms, 12(7), 685. https://doi.org/10.3390/axioms12070685