Stability of Stochastic Partial Differential Equations
Abstract
:1. Introduction
- (i)
- A standard Wiener process is specified on the probability space .
- (ii)
- For any and subset , we have .
- (a)
- The function has an -measurable value.
- (b)
- For the expectation value E, we have .
- (iii)
- are measurable processes with values for a subspace .
2. Stochastic Parabolic Equations
- (1)
- For , the function is strongly continuous in t and s.
- (2)
- The time-evolution identities
- (3)
- maps the domain of into itself. In t and s for , the operator is strongly continuous and bounded.
- (4)
- In the domain , the operator-valued function is differentiable with respect to both t and s, whereas
3. Applications
4. Numerical Results
DS/N, M | 10, 10 | 20, 20 | 40, 40 | (28) | |
DS (23) | 0.0018 | 0.0010 | 0.0004782 |
DS/N, M | 10, 10 | 20, 20 | 40, 40 | (30) | |
DS (29) | 0.00077724 | 0.00034105 | 0.00015924 |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPE | stochastic partial equation |
SDE | stochastic differential equation |
SPDE | stochastic parabolic differential equation |
IBVP | initial-boundary value problem |
DBC | Dirichlet-boundary conditions |
DS | difference scheme |
RDS | Rothe difference scheme |
PD | positive definite |
References
- Aggez, N.; Ashyralyyeva, M. Numerical solution of stochastic hyperbolic equations. Abstr. Appl. Anal. 2012, 2012, 824819. [Google Scholar] [CrossRef] [Green Version]
- Ashyralyev, A. On modified Crank-Nicholson difference schemes for stochastic parabolic equation. Numer. Funct. Anal. Optim. 2008, 29, 268–282. [Google Scholar] [CrossRef]
- Ashyralyev, A.; Akat, M. An approximation of stochastic hyperbolic equations: Case with Wiener process. Math. Methods Appl. Sci. 2013, 36, 1095–1106. [Google Scholar] [CrossRef]
- Ashyralyev, A.; San, M.E. An approximation of semigroups method for stochastic parabolic equations. Abstr. Appl. Anal. 2012, 2012, 624248. [Google Scholar] [CrossRef] [Green Version]
- Cerrai, S. A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 1994, 49, 349–368. [Google Scholar] [CrossRef]
- Curtain, R.F.; Falb, P.L. Stochastic differential equations in Hilbert space. J. Differ. Equ. 1971, 10, 412–430. [Google Scholar] [CrossRef] [Green Version]
- Da Prato, G.; Lunardi, A. Ornstein-Uhlenbeck operators with time periodic coefficients. J. Evol. Equ. 2007, 23, 587–614. [Google Scholar] [CrossRef]
- Dawson, D. Stochastic evolution equations and related measure processes. J. Multivar. Anal. 1975, 5, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Hausenblas, E.; Seidler, J. A note on maximal inequality for stochastic convolutions. Czechoslov. Math. J. 2001, 51, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Karczewska, A. Stochastic integral with respect to cylindrical Wiener process. arXiv 2005, arXiv:math/0511512. [Google Scholar]
- Kato, T. Abstract evolution equations of parabolic type in Banach and Hilbert spaces. Nagoya Math. J. 1961, 19, 93–125. [Google Scholar] [CrossRef] [Green Version]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Applied Mathematics; Springer: Berlin/Heidelberg, Germany, 1999; Volume 23. [Google Scholar]
- Peszat, S.; Zabczyk, J. Nonlinear stochastic wave and heat equations. Probab. Theory Relat. Fields 2000, 116, 421–443. [Google Scholar] [CrossRef]
- Seidler, J. Da Prato-Zabczyk’s maximal inequality revisited I. J. Math. Bohem. 1993, 118, 67–106. [Google Scholar] [CrossRef]
- Tubaro, L. An estimate of Burkholder type for stochastic processes defined by the stochastic integral. Stoch. Anal. Appl. 1984, 2, 187–192. [Google Scholar] [CrossRef]
- Veraar, M.C. Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations. J. Evol. Equ. 2010, 10, 85–127. [Google Scholar] [CrossRef] [Green Version]
- Jentzen, A.; Kloeden, P.E. The numerical approximation of stochastic partial differential equations. Milan J. Math. 2009, 77, 205–244. [Google Scholar] [CrossRef]
- Klenke, A. Wahrscheinlichkeitstheorie; Springer: Berlin, Germany, 2006. (In German) [Google Scholar]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Diaz Palencia, J.L. Semigroup Theory and Asymptotic Profiles of Solutions for a Higher-Order Fisher-KPP Problem in RN; Department of Mathematics, Texas State University: San Marcos, TX, USA, 2023. [Google Scholar]
- Ashyralyev, A.; Sobolevskii, P.E. New Difference Schemes for Partial Differential Equations; Birkhäuser: Basel, Switzerland, 2004. [Google Scholar]
- Sobolevskii, P.E. Coerciveness inequalities for abstract parabolic equations. Dokl. Acad. Nauk SSSR 1964, 197, 52–55. (In Russian) [Google Scholar]
- Sobolevskii, P.E. Difference Methods for the Approximate Solution of Differential Equations; Voronezh State University Press: Voronezh, Russia, 1975. (In Russian) [Google Scholar]
- Ashyralyev, A.; Okur, U. Numerical solution of the stochastic parabolic equation with the dependent operator coefficient. AIP Conf. Proc. 2015, 1676, 020004. [Google Scholar]
- Ashyralyev, A.; Okur, U. Crank-Nicholson difference scheme for a stochastic parabolic equation with a dependent operator coefficient. AIP Conf. Proc. 2016, 1759, 020103. [Google Scholar]
- Barbu, V.; Da Prato, G.; Tubaro, L. Stochastic wave equations with dissipative damping. Stoch. Process. Their Appl. 2007, 117, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashyralyev, A.; Okur, Ü. Stability of Stochastic Partial Differential Equations. Axioms 2023, 12, 718. https://doi.org/10.3390/axioms12070718
Ashyralyev A, Okur Ü. Stability of Stochastic Partial Differential Equations. Axioms. 2023; 12(7):718. https://doi.org/10.3390/axioms12070718
Chicago/Turabian StyleAshyralyev, Allaberen, and Ülker Okur. 2023. "Stability of Stochastic Partial Differential Equations" Axioms 12, no. 7: 718. https://doi.org/10.3390/axioms12070718
APA StyleAshyralyev, A., & Okur, Ü. (2023). Stability of Stochastic Partial Differential Equations. Axioms, 12(7), 718. https://doi.org/10.3390/axioms12070718