Synchronization of Fractional Partial Difference Equations via Linear Methods
Abstract
:1. Introduction
2. Preliminaries
3. Model Description
4. Synchronization of Discrete-Time Fractional Reaction-Diffusion Lengyel–Epstein System
5. Synchronization of Discrete Fractional Degn–Harrison Reaction-Diffusion Systems
6. Numerical Simulation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mesdoui, F.; Ouannas, A.; Shawagfeh, N.; Grassi, G.; Pham, V.T. Synchronization methods for the Degn-Harrison reaction-diffusion systems. IEEE Access 2020, 8, 91829–91836. [Google Scholar] [CrossRef]
- Ouannas, A.; Abdelli, M.; Odibat, Z.; Wang, X.; Pham, V.T.; Grassi, G.; Alsaedi, A. Synchronization control in reaction-diffusion systems: Application to Lengyel-Epstein system. Complexity 2019, 2019, 2832781. [Google Scholar] [CrossRef]
- Ambrosio, B.; Aziz-Alaoui, M.A. Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Comput. Math. Appl. 2012, 64, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Caraballo, T.; Chueshov, I.D.; Kloeden, P.E. Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain. SIAM J. Math. Anal. 2007, 38, 1489–1507. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, B.; Aziz-Alaoui, M.A.; Phan, V.L.E. Large time behaviour and synchronization of complex networks of reaction–diffusion systems of FitzHugh–Nagumo type. IMA J. Appl. Math. 2019, 84, 416–443. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Oldham, K.B. The Fractional Calculus; Spanier, J., Ed.; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Montreux, Switzerland, 1993. [Google Scholar]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Silva, M.F.; Machado, J.T. Fractional order PD α joint control of legged robots. J. Vib. Control. 2006, 12, 1483–1501. [Google Scholar] [CrossRef]
- Duarte, F.B.; Machado, J.T. Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 2002, 29, 315–342. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 2010, 639801. [Google Scholar] [CrossRef] [Green Version]
- Acay, B.; Inc, M. Electrical circuits RC, LC, and RLC under generalized type non-local singular fractional operator. Fractal Fract. 2021, 5, 9. [Google Scholar] [CrossRef]
- Wang, B.; Ouannas, A.; Karaca, Y.; Xia, W.F.; Jahanshahi, H.; Alkhateeb, A.F.; Nour, M. A Hybrid Approach for Synchronizing between Two Reaction Diffusion Systems of Integer-and Fractional-Order Applied on Certain Chemical Models. Fractals 2022, 30, 2240145. [Google Scholar] [CrossRef]
- Berkal, M.; Almatrafi, M.B. Bifurcation and stability of two-dimensional activator—Inhibitor model with fractional-order derivative. Fractal Fract. 2023, 7, 344. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Atici, F.M.; Eloe, P.W. A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2007, 2, 165–176. [Google Scholar]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Kelley, W.G.; Peterson, A.C. Difference Equations: An Introduction with Applications; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Baleanu, D.; Wu, G.C.; Bai, Y.R.; Chen, F.L. Stability analysis of Caputo–like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 520–530. [Google Scholar] [CrossRef]
- Atici, F.; Eloe, P. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Hamadneh, T.; Abbes, A.; Falahah, I.A.; AL-Khassawneh, Y.A.; Heilat, A.S.; Al-Husban, A.; Ouannas, A. Complexity and Chaos Analysis for Two-Dimensional Discrete-Time Predator–Prey Leslie–Gower Model with Fractional Orders. Axioms 2023, 12, 561. [Google Scholar] [CrossRef]
- Saadeh, R.; Abbes, A.; Al-Husban, A.; Ouannas, A.; Grassi, G. The Fractional Discrete Predator–Prey Model: Chaos, Control and 252 Synchronization. Fractal Fract. 2023, 7, 120. [Google Scholar] [CrossRef]
- Merks, R.M.; Van de Peer, Y.; Inzé, D.; Beemster, G.T. Canalization without flux sensors: A traveling-wave hypothesis. Trends Plant Sci. 2007, 12, 384–390. [Google Scholar] [CrossRef]
- Cuevas, J.; English, L.Q.; Kevrekidis, P.G.; Anderson, M. Discrete breathers in a forced-damped array of coupled pendula: Modeling, computation, and experiment. Phys. Rev. Lett. 2009, 102, 224101. [Google Scholar] [CrossRef] [Green Version]
- Nishiura, Y.; Ueyama, D.; Yanagita, T. Chaotic pulses for discrete reaction diffusion systems. SIAM J. Appl. Dyn. Syst. 2005, 4, 733–754. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Han, B.; Xu, L.; Zhang, G. Spiral patterns near Turing instability in a discrete reaction diffusion system. Chaos Solitons Fractals 2013, 49, 1–6. [Google Scholar] [CrossRef]
- Lee, I.H.; Jo, U.I. Pattern formations with Turing and Hopf oscillating pattern in a discrete reaction-diffusion system. Bull. Korean Chem. Soc. 2000, 21, 1213–1216. [Google Scholar]
- Almatroud, O.A.; Hioual, A.; Ouannas, A.; Grassi, G. On Fractional-Order Discrete-Time Reaction Diffusion Systems. Mathematics 2023, 11, 2447. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Zeng, S.D.; Deng, Z.G. Discrete fractional diffusion equation. Nonlinear Dyn. 2015, 80, 281–286. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Xie, H.P.; Zeng, S.D. Discrete fractional diffusion equation of chaotic order. Int. J. Bifurc. Chaos 2016, 26, 1650013. [Google Scholar] [CrossRef] [Green Version]
- Mesdoui, F.; Shawagfeh, N.; Ouannas, A. Global synchronization of fractional-order and integer-order N component reaction diffusion systems: Application to biochemical models. Math. Methods Appl. Sci. 2021, 44, 1003–1012. [Google Scholar] [CrossRef]
- Yi, F.; Wei, J.; Shi, J. Global asymptotical behavior of the Lengyel–Epstein reaction–diffusion system. Appl. Math. Lett. 2009, 22, 52–55. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Falahah, I.; Hioual, A.; Al-Qadri, M.O.; AL-Khassawneh, Y.A.; Al-Husban, A.; Hamadneh, T.; Ouannas, A. Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms 2023, 12, 728. https://doi.org/10.3390/axioms12080728
Abu Falahah I, Hioual A, Al-Qadri MO, AL-Khassawneh YA, Al-Husban A, Hamadneh T, Ouannas A. Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms. 2023; 12(8):728. https://doi.org/10.3390/axioms12080728
Chicago/Turabian StyleAbu Falahah, Ibraheem, Amel Hioual, Mowafaq Omar Al-Qadri, Yazan Alaya AL-Khassawneh, Abdallah Al-Husban, Tareq Hamadneh, and Adel Ouannas. 2023. "Synchronization of Fractional Partial Difference Equations via Linear Methods" Axioms 12, no. 8: 728. https://doi.org/10.3390/axioms12080728
APA StyleAbu Falahah, I., Hioual, A., Al-Qadri, M. O., AL-Khassawneh, Y. A., Al-Husban, A., Hamadneh, T., & Ouannas, A. (2023). Synchronization of Fractional Partial Difference Equations via Linear Methods. Axioms, 12(8), 728. https://doi.org/10.3390/axioms12080728