On Entropy Estimation of Inverse Weibull Distribution under Improved Adaptive Progressively Type-II Censoring with Applications
Abstract
:1. Introduction
1.1. Inverse Weibull Distribution and Its Entropy Indices
1.2. Progressive Censoring Scheme and Some of Its Modifications
2. Maximum Likelihood Estimation
2.1. Point Estimation
2.2. Interval Estimation
3. Maximum Product of Spacing Estimation
3.1. Point Estimation
3.2. Interval Estimation
4. Bootstrap Confidence Intervals
Algorithm 1 PB confidence interval method |
Require: Number of bootstrapping samples 1000 Require: IAP-TIIC sample Require: Censoring scheme
|
Algorithm 2 SB confidence interval method |
Require: Number of bootstrapping samples 1000 Require: IAP-TIIC sample Require: Censoring scheme
|
5. Monte Carlo Simulation Outcomes
- Generate the conventional PT-IIC sample with censoring scheme according to the method proposed by Balakrishnan and Sandhu [40].
- Find such that and discard the progressive order statistics .
- Find such that ; accordingly, discard to obtain the required IAPT-IIC sample.
- Overall, as n (or ) increases, the estimation efficiency improves, i.e., biases and RMSEs tend to 0, while the CILs decrease for all investigated interval estimates, and their CPs increase as expected.
- As and increase, both biases and RMSEs of the considered point estimators decrease.
- Estimation based on MLEs underestimates and noticeably, while estimation based on MPSEs overestimates these entropy measurements.
- In most cases, the estimators of the considered entropy measurements based on MLEs outperform their counterparts based on MPSEs in terms of biases and RMSEs. This observation was remarked by [13] when they performed a similar study but based on conventional PT-IIC data.
- Regarding CILs, all considered confidence intervals based on MLEs, are either shorter than their counterparts based on MPSEs or similar.
- Assuming a nominal level of 95%, the least simulated CP among all confidence intervals and simulation settings was 75%. It is observed that confidence intervals based on MPSEs outperformed their counterparts based on MLEs in terms of CPs and sometimes achieved the nominal level. This observation is noticed in all considered simulation settings except for the PBs intervals in the case of Scheme 3 (i.e., IAPT-IIC).
6. Illustrative Examples
- As the confidence level increases, the lengths of the CIs increase as expected.
- The CIs obtained based on APT-IIC and IAPT-IIC have fewer lengths than those obtained using the PT-IIC scheme.
- The bootstrap-based confidence intervals based on MPSEs have fewer lengths than those obtained using their counterparts established based on the MLEs.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Amigó, J.; Balogh, S.; Hernández, S. A Brief Review of Generalized Entropies. Entropy 2018, 20, 813. [Google Scholar] [CrossRef] [Green Version]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1961; University of California Press: Berkeley, CA, USA, 1961; pp. 547–561. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Wong, K.; Chen, S. The entropy of ordered sequences and order statistics. IEEE Trans. Inf. Theory 1990, 36, 276–284. [Google Scholar] [CrossRef]
- Baratpour, S.; Ahmadi, J.; Arghami, N.R. Entropy properties of record statistics. Stat. Pap. 2007, 48, 197–213. [Google Scholar] [CrossRef]
- Morabbi, H.; Razmkhah, M. Entropy of Hybrid Censoring Schemes. J. Stat. Res. Iran 2010, 6, 161–176. [Google Scholar] [CrossRef]
- Abo-Eleneen, Z.A. The Entropy of Progressively Censored Samples. Entropy 2011, 13, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Cramer, E.; Bagh, C. Minimum and Maximum Information Censoring Plans in Progressive Censoring. Commun. Stat.-Theory Methods 2011, 40, 2511–2527. [Google Scholar] [CrossRef]
- Cho, Y.; Sun, H.; Lee, K. An Estimation of the Entropy for a Rayleigh Distribution Based on Doubly-Generalized Type-II Hybrid Censored Samples. Entropy 2014, 16, 3655–3669. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.S.; Zaky, A.N. Estimation of entropy for inverse Weibull distribution under multiple censored data. J. Taibah Univ. Sci. 2019, 13, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Bantan, R.A.R.; Elgarhy, M.; Chesneau, C.; Jamal, F. Estimation of Entropy for Inverse Lomax Distribution under Multiple Censored Data. Entropy 2020, 22, 601. [Google Scholar] [CrossRef] [PubMed]
- Okasha, H.; Nassar, M. Product of spacing estimation of entropy for inverse Weibull distribution under progressive type-II censored data with applications. J. Taibah Univ. Sci. 2022, 16, 259–269. [Google Scholar] [CrossRef]
- Keller, A.; Goblin, M.; Farnworth, N. Reliability analysis of commercial vehicle engines. Reliab. Eng. 1985, 10, 15–25. [Google Scholar] [CrossRef]
- Calabria, R.; Pulcini, G. Bayes 2-sample prediction for the inverse weibull distribution. Commun. Stat.-Theory Methods 1994, 23, 1811–1824. [Google Scholar] [CrossRef]
- Jiang, R.; Murthy, D.; Ji, P. Models involving two inverse Weibull distributions. Reliab. Eng. Syst. Saf. 2001, 73, 73–81. [Google Scholar] [CrossRef]
- Mahmoud, M.; Sultan, K.; Amer, S. Order statistics from inverse weibull distribution and associated inference. Comput. Stat. Data Anal. 2003, 42, 149–163. [Google Scholar] [CrossRef]
- Sultan, K.S. Bayesian Estimates Based on Record Values from the Inverse Weibull Lifetime Model. Qual. Technol. Quant. Manag. 2008, 5, 363–374. [Google Scholar] [CrossRef]
- Kundu, D.; Howlader, H. Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data. Comput. Stat. Data Anal. 2010, 54, 1547–1558. [Google Scholar] [CrossRef]
- Hassan, A.S.; Assar, S.M.; Zaky, A.N. Constant-stress partially accelerated life tests for inverted Weibull distribution with multiple censored data. Int. J. Adv. Stat. Probab. 2015, 3, 72. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, I. Estimation in Inverse Weibull Distribution Based on Randomly Censored Data. Statistica 2019, 79, 47–74. [Google Scholar] [CrossRef]
- Al-Duais, F.S. Bayesian Analysis of Record Statistic from the Inverse Weibull Distribution under Balanced Loss Function. Math. Probl. Eng. 2021, 2021, 6648462. [Google Scholar] [CrossRef]
- Rastogi, M.K.; Tripathi, Y.M.; Wu, S.J. Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring. J. Appl. Stat. 2012, 39, 2389–2411. [Google Scholar] [CrossRef]
- Ahmed, E.A. Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: An Markov chain Monte Carlo approach. J. Appl. Stat. 2013, 41, 752–768. [Google Scholar] [CrossRef]
- Dey, S.; Nassar, M.; Maurya, R.K.; Tripathi, Y.M. Estimation and prediction of Marshall–Olkin extended exponential distribution under progressively type-II censored data. J. Stat. Comput. Simul. 2018, 88, 2287–2308. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring; Birkhäuser: Boston, MA, USA, 2000. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Dey, S.; Nassar, M.; Kumar, D. Moments and estimation of reduced Kies distribution based on progressive type-II right censored order statistics. Hacet. J. Math. Stat. 2018, 48, 332–350. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Nassar, M.; Malik, M.R.; Dey, S. Estimation of the Location and Scale Parameters of Generalized Pareto Distribution Based on Progressively Type-II Censored Order Statistics. Ann. Data Sci. 2023, 10, 349–383. [Google Scholar] [CrossRef]
- Ng, H.K.T.; Kundu, D.; Chan, P.S. Statistical analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme. Nav. Res. Logist. (NRL) 2009, 56, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.S.; Chan, P.S.; Xie, M.; Ng, H.K.T. Statistical inference for the extreme value distribution under adaptive Type-II progressive censoring schemes. J. Stat. Comput. Simul. 2014, 84, 1099–1114. [Google Scholar] [CrossRef]
- Sobhi, M.M.A.; Soliman, A.A. Estimation for the exponentiated Weibull model with adaptive Type-II progressive censored schemes. Appl. Math. Model. 2016, 40, 1180–1192. [Google Scholar] [CrossRef]
- EL-Sagheer, R.M.; Mahmoud, M.A.W.; Abdallah, S.H.M. Statistical inferences for new Weibull-Pareto distribution under an adaptive Type-II progressive censored data. J. Stat. Manag. Syst. 2018, 21, 1021–1057. [Google Scholar] [CrossRef]
- Yan, W.; Li, P.; Yu, Y. Statistical inference for the reliability of Burr-XII distribution under improved adaptive Type-II progressive censoring. Appl. Math. Model. 2021, 95, 38–52. [Google Scholar] [CrossRef]
- Cheng, R.C.H.; Amin, N.A.K. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin. J. R. Stat. Soc. Ser. B (Methodol.) 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Coolen, F.; Newby, M. A Note on the Use of the Product of Spacings in Bayesian Inference; Memorandum COSOR, Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 1990. [Google Scholar]
- Anatolyev, S.; Kosenok, G. An Alternative to Maximum Likelihood Based on Spacings. Econom. Theory 2005, 21, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982. [Google Scholar] [CrossRef]
- Hall, P. Theoretical Comparison of Bootstrap Confidence Intervals. Ann. Stat. 1988, 16, 927–953. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R.A. A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples. Am. Stat. 1995, 49, 229–230. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Bhaumik, D.K.; Kapur, K.; Gibbons, R.D. Testing Parameters of a Gamma Distribution for Small Samples. Technometrics 2009, 51, 326–334. [Google Scholar] [CrossRef]
- Vishwakarma, P.K.; Kaushik, A.; Pandey, A.; Singh, U.; Singh, S.K. Bayesian Estimation for Inverse Weibull Distribution Under Progressive Type-II Censored Data With Beta-Binomial Removals. Austrian J. Stat. 2018, 47, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley-Interscience: Hoboken, NJ, USA, 2003; p. 630. [Google Scholar]
- Dey, S.; Nassar, M. Classical methods of estimation on constant stress accelerated life tests under exponentiated Lindley distribution. J. Appl. Stat. 2019, 47, 975–996. [Google Scholar] [CrossRef]
- Elshahhat, A.; Rastogi, M.K. Estimation of Parameters of Life for an Inverted Nadarajah–Haghighi Distribution from Type-II Progressively Censored Samples. J. Indian Soc. Probab. Stat. 2021, 22, 113–154. [Google Scholar] [CrossRef]
Timeline | Termination Time | Scheme |
---|---|---|
PT-IIC | ||
APT-IIC | ||
IAPT-IIC |
n | 40 | 40 | 60 | 60 | 60 | 60 | 80 | 80 | 80 | 80 |
m | 20 | 20 | 20 | 20 | 30 | 30 | 20 | 20 | 40 | 40 |
1 | 1.2 | 1 | 1.2 | 1 | 1.2 | 1 | 1.2 | 1 | 1.2 | |
1.5 | 1.7 | 1.5 | 1.7 | 1.5 | 1.7 | 1.5 | 1.7 | 1.5 | 1.7 |
Parameters | S | ||||
---|---|---|---|---|---|
1.258327 | 1.761439 | 1.438668 | 2.55747 | 1.66701 | |
0.5356478 | 0.860006 | 0.659586 | 1.026455 | 0.705069 |
Scheme | n | R | Data | |||
---|---|---|---|---|---|---|
PT-IIC | 34 | 17, -, - | ∞ | ∞ | 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.9, 0.9, 1.2, | |
1.3, 2.0, 2.4, 2.5, 2.7, 3.2, 4.0, 6.8 | ||||||
APT-IIC | 34 | 17, 8, - | 1 | ∞ | 0.4, 0.4, 0.4, 0.5, 0.6, 0.6, 0.9, 1.0, 1.1, | |
1.2, 1.2, 1.3, 1.8, 2.0, 2.0, 2.3, 2.4 | ||||||
IAPT-IIC | 34 | 17, 8, 15 | 1 | 2 | 0.4, 0.4, 0.4, 0.5, 0.6, 0.6, 0.9, 1.0, 1.1, | |
1.2, 1.2, 1.3, 1.8, 2.0, 2.0 |
Scheme | n | R | Data | |||
---|---|---|---|---|---|---|
PT-IIC | 19 | 9, -, - | ∞ | ∞ | 2.78, 3.16, 4.15, 4.67, 7.35, | |
8.01, 12.06, 32.52, 33.91 | ||||||
APT-IIC | 19 | 9, 4, - | 30 | ∞ | 2.78, 3.16, 4.67, 7.35, 31.75, | |
32.52, 33.91, 36.71, 72.89 | ||||||
IAPT-IIC | 19 | 9, 4, 7 | 30 | 35 | 2.78, 3.16, 4.67, 7.35, | |
31.75, 32.52, 33.91 |
MLE | ||||
Data | Entropy | PT-IIC | APT-IIC | IAPT-IIC |
1 | SE | 2.597 (0.452) | 2.213 (0.409) | 2.253 (0.441) |
RE (0.6) | 4.765 (1.369) | 3.823 (0.970) | 3.924 (1.082) | |
QE (0.6) | 14.315 (6.678) | 9.034 (4.083) | 9.512 (4.636) | |
RE (0.9) | 2.822 (0.505) | 2.400 (0.450) | 2.445 (0.487) | |
QE (0.9) | 3.261 (0.618) | 2.713 (0.559) | 2.770 (0.604) | |
2 | SE | 4.664 (0.661) | 6.419 (0.900) | 6.425 (1.030) |
RE (0.7) | 5.881 (1.207) | 10.096 (3.655) | 10.123 (4.236) | |
QE (0.7) | 16.126 (1.769) | 65.581 (10.360) | 66.137 (12.071) | |
RE (0.9) | 4.913 (0.746) | 6.951 (1.103) | 6.959 (1.270) | |
QE (0.9) | 6.344 (0.769) | 10.039 (1.140) | 10.055 (1.312) | |
MPSE | ||||
Data | Entropy | PT-IIC | APT-IIC | IAPT-IIC |
1 | SE | 3.194 (0.581) | 2.278 (0.491) | 1.462 (0.466) |
RE (0.6) | 6.704 (3.108) | 3.827 (1.143) | 2.427 (0.816) | |
QE (0.6) | 34.021 (22.934) | 9.056 (4.501) | 4.100 (3.167) | |
RE (0.9) | 3.483 (0.666) | 2.461 (0.540) | 1.593 (0.500) | |
QE (0.9) | 4.166 (0.795) | 2.791 (0.664) | 1.727 (0.645) | |
2 | SE | 4.738 (0.729) | 5.967 (0.899) | 4.143 (0.784) |
RE (0.7) | 6.201 (1.503) | 9.185 (3.286) | 5.358 (1.474) | |
QE (0.7) | 18.085 (2.513) | 49.104 (8.633) | 13.298 (2.474) | |
RE (0.9) | 5.025 (0.840) | 6.460 (1.100) | 4.392 (0.889) | |
QE (0.9) | 6.528 (0.886) | 9.080 (1.156) | 5.515 (0.959) |
PT-IIC Scheme | ||||||||||
Method | Entropy | 90% PB | 95% PB | 99% PB | 90% SB | 95% SB | 99% SB | 90% ACI | 95% ACI | 99% ACI |
MLE | SE | 1.518 | 1.769 | 2.338 | 1.630 | 1.944 | 2.554 | 1.488 | 1.774 | 2.331 |
RE (0.7) | 4.663 | 5.915 | 8.752 | 5.029 | 6.133 | 8.866 | 4.503 | 5.366 | 7.052 | |
QE (0.7) | 42.955 | 67.353 | 186.000 | 33.999 | 42.096 | 55.371 | 21.968 | 26.177 | 34.402 | |
RE (0.9) | 1.746 | 2.033 | 2.742 | 1.914 | 2.201 | 2.944 | 1.661 | 1.980 | 2.602 | |
QE (0.9) | 2.301 | 2.686 | 3.633 | 2.504 | 2.887 | 3.803 | 2.033 | 2.423 | 3.184 | |
MPSE | SE | 1.528 | 1.823 | 2.400 | 1.751 | 2.094 | 2.892 | 1.911 | 2.277 | 2.993 |
RE (0.7) | 8.587 | 10.095 | 13.911 | 9.655 | 12.035 | 17.533 | 10.224 | 12.183 | 16.011 | |
QE (0.7) | 359.823 | 617.294 | 2256.764 | 162.740 | 212.909 | 327.560 | 75.445 | 89.898 | 118.146 | |
RE (0.9) | 2.026 | 2.393 | 3.170 | 2.098 | 2.443 | 3.523 | 2.190 | 2.609 | 3.429 | |
QE (0.9) | 2.952 | 3.488 | 4.658 | 3.025 | 3.542 | 5.128 | 2.615 | 3.116 | 4.095 | |
APT-IIC Scheme | ||||||||||
Method | Entropy | 90% PB | 95% PB | 99% PB | 90% SB | 95% SB | 99% SB | 90% ACI | 95% ACI | 99% ACI |
MLE | SE | 1.326 | 1.607 | 2.051 | 1.438 | 1.730 | 2.280 | 1.345 | 1.602 | 2.106 |
RE (0.7) | 3.363 | 4.255 | 5.827 | 3.451 | 4.180 | 5.470 | 3.192 | 3.803 | 4.998 | |
QE (0.7) | 18.232 | 26.308 | 49.949 | 15.298 | 18.480 | 24.171 | 13.431 | 16.004 | 21.033 | |
RE (0.9) | 1.439 | 1.739 | 2.342 | 1.575 | 1.893 | 2.597 | 1.479 | 1.762 | 2.316 | |
QE (0.9) | 1.818 | 2.194 | 2.969 | 1.980 | 2.372 | 3.250 | 1.837 | 2.189 | 2.877 | |
MPSE | SE | 1.238 | 1.471 | 1.937 | 1.681 | 1.984 | 2.708 | 1.616 | 1.925 | 2.530 |
RE (0.7) | 2.930 | 3.563 | 4.838 | 4.488 | 5.424 | 6.873 | 3.759 | 4.479 | 5.886 | |
QE (0.7) | 13.732 | 18.080 | 29.583 | 19.883 | 23.782 | 30.958 | 14.808 | 17.645 | 23.189 | |
RE (0.9) | 1.377 | 1.616 | 2.197 | 1.882 | 2.226 | 3.120 | 1.777 | 2.117 | 2.782 | |
QE (0.9) | 1.721 | 2.021 | 2.741 | 2.275 | 2.780 | 3.851 | 2.183 | 2.602 | 3.419 | |
IAPT-IIC Scheme | ||||||||||
Method | Entropy | 90% PB | 95% PB | 99% PB | 90% SB | 95% SB | 99% SB | 90% ACI | 95% ACI | 99% ACI |
MLE | SE | 1.988 | 2.280 | 2.825 | 2.237 | 2.603 | 3.176 | 1.452 | 1.730 | 2.273 |
RE (0.7) | 4.174 | 5.408 | 7.830 | 5.755 | 6.677 | 8.889 | 3.558 | 4.240 | 5.572 | |
QE (0.7) | 21.877 | 35.278 | 83.559 | 22.208 | 26.256 | 34.681 | 15.251 | 18.173 | 23.883 | |
RE (0.9) | 2.247 | 2.595 | 3.179 | 2.617 | 3.023 | 3.546 | 1.602 | 1.908 | 2.508 | |
QE (0.9) | 2.793 | 3.224 | 3.999 | 3.096 | 3.535 | 4.094 | 1.988 | 2.369 | 3.113 | |
MPSE | SE | 1.177 | 1.401 | 1.826 | 1.789 | 2.118 | 2.849 | 1.532 | 1.826 | 2.400 |
RE (0.7) | 1.847 | 2.162 | 2.869 | 3.553 | 4.209 | 5.597 | 2.685 | 3.200 | 4.205 | |
QE (0.7) | 3.903 | 4.581 | 6.339 | 6.514 | 7.389 | 8.990 | 10.419 | 12.415 | 16.316 | |
RE (0.9) | 1.236 | 1.490 | 1.925 | 1.937 | 2.313 | 3.143 | 1.644 | 1.960 | 2.575 | |
QE (0.9) | 1.384 | 1.665 | 2.140 | 1.999 | 2.404 | 3.117 | 2.123 | 2.530 | 3.325 |
PT-IIC Scheme | ||||||||||
Method | Entropy | 90% PB | 95% PB | 99% PB | 90% SB | 95% SB | 99% SB | 90% ACI | 95% ACI | 99% ACI |
MLE | SE | 2.155 | 2.591 | 3.640 | 2.548 | 3.268 | 4.760 | 2.174 | 2.591 | 3.405 |
RE(0.7) | 3.892 | 4.538 | 6.173 | 4.933 | 6.297 | 9.497 | 3.970 | 4.731 | 6.218 | |
QE(0.7) | 24.058 | 29.552 | 44.329 | 35.504 | 55.800 | 109.868 | 5.821 | 6.936 | 9.116 | |
RE(0.9) | 2.399 | 3.010 | 4.194 | 2.951 | 3.899 | 5.457 | 2.454 | 2.924 | 3.843 | |
QE(0.9) | 3.857 | 4.842 | 6.707 | 5.068 | 6.822 | 9.784 | 2.530 | 3.015 | 3.963 | |
MPSE | SE | 2.331 | 2.796 | 3.645 | 2.454 | 3.026 | 3.977 | 2.397 | 2.856 | 3.753 |
RE(0.7) | 5.706 | 7.061 | 14.586 | 4.990 | 6.168 | 8.271 | 4.945 | 5.892 | 7.744 | |
QE(0.7) | 53.727 | 77.886 | 746.232 | 32.066 | 43.943 | 66.353 | 8.266 | 9.850 | 12.945 | |
RE(0.9) | 2.733 | 3.281 | 4.404 | 2.816 | 3.503 | 4.843 | 2.763 | 3.292 | 4.327 | |
QE(0.9) | 4.564 | 5.512 | 7.535 | 4.714 | 6.183 | 9.169 | 2.915 | 3.474 | 4.565 | |
APT-IIC Scheme | ||||||||||
Method | Entropy | 90% PB | 95% PB | 99% PB | 90% SB | 95% SB | 99% SB | 90% ACI | 95% ACI | 99% ACI |
MLE | SE | 2.804 | 3.349 | 4.313 | 3.440 | 4.137 | 6.141 | 2.960 | 3.527 | 4.636 |
RE(0.7) | 8.978 | 11.326 | 14.857 | 16.522 | 22.075 | 37.542 | 12.024 | 14.327 | 18.829 | |
QE(0.7) | 266.041 | 477.384 | 1085.660 | 475.609 | 664.807 | 1561.745 | 34.080 | 40.609 | 53.369 | |
RE(0.9) | 3.683 | 4.304 | 5.727 | 4.529 | 5.315 | 7.657 | 3.628 | 4.323 | 5.681 | |
QE(0.9) | 7.333 | 8.663 | 11.661 | 9.071 | 10.922 | 16.283 | 3.749 | 4.467 | 5.870 | |
MPSE | SE | 2.604 | 3.175 | 4.099 | 3.493 | 4.322 | 5.968 | 2.958 | 3.525 | 4.632 |
RE(0.7) | 8.232 | 10.790 | 14.285 | 17.378 | 22.106 | 29.118 | 10.809 | 12.880 | 16.927 | |
QE(0.7) | 154.209 | 311.100 | 725.601 | 358.010 | 449.731 | 903.188 | 28.400 | 33.841 | 44.474 | |
RE(0.9) | 3.144 | 4.009 | 5.012 | 4.358 | 5.395 | 7.132 | 3.619 | 4.313 | 5.668 | |
QE(0.9) | 5.667 | 7.374 | 9.291 | 8.243 | 10.021 | 13.872 | 3.803 | 4.531 | 5.955 | |
IAPT-IIC Scheme | ||||||||||
Method | Entropy | 90% PB | 95% PB | 99% PB | 90% SB | 95% SB | 99% SB | 90% ACI | 95% ACI | 99% ACI |
MLE | SE | 4.192 | 4.904 | 6.868 | 4.615 | 5.490 | 7.508 | 3.389 | 4.039 | 5.308 |
RE(0.7) | 9.067 | 11.251 | 16.179 | 25.806 | 33.358 | 43.823 | 13.935 | 16.605 | 21.822 | |
QE(0.7) | 212.786 | 372.576 | 1351.513 | 782.050 | 1174.103 | 1973.134 | 39.711 | 47.319 | 62.187 | |
RE(0.9) | 6.442 | 7.626 | 11.217 | 5.965 | 6.927 | 9.608 | 4.177 | 4.978 | 6.542 | |
QE(0.9) | 14.273 | 17.609 | 29.263 | 12.933 | 14.969 | 22.750 | 4.316 | 5.143 | 6.759 | |
MPSE | SE | 2.212 | 2.667 | 3.516 | 3.534 | 4.216 | 5.726 | 2.579 | 3.073 | 4.039 |
RE(0.7) | 3.723 | 4.654 | 5.935 | 8.070 | 9.603 | 11.600 | 4.848 | 5.776 | 7.591 | |
QE(0.7) | 14.064 | 19.150 | 27.711 | 47.129 | 60.478 | 114.477 | 8.139 | 9.698 | 12.746 | |
RE(0.9) | 2.409 | 2.872 | 3.977 | 4.144 | 4.973 | 7.261 | 2.924 | 3.484 | 4.579 | |
QE(0.9) | 3.375 | 4.052 | 5.524 | 6.495 | 8.420 | 12.419 | 3.156 | 3.760 | 4.942 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, F.M.A.; Nassar, M. On Entropy Estimation of Inverse Weibull Distribution under Improved Adaptive Progressively Type-II Censoring with Applications. Axioms 2023, 12, 751. https://doi.org/10.3390/axioms12080751
Alam FMA, Nassar M. On Entropy Estimation of Inverse Weibull Distribution under Improved Adaptive Progressively Type-II Censoring with Applications. Axioms. 2023; 12(8):751. https://doi.org/10.3390/axioms12080751
Chicago/Turabian StyleAlam, Farouq Mohammad A., and Mazen Nassar. 2023. "On Entropy Estimation of Inverse Weibull Distribution under Improved Adaptive Progressively Type-II Censoring with Applications" Axioms 12, no. 8: 751. https://doi.org/10.3390/axioms12080751
APA StyleAlam, F. M. A., & Nassar, M. (2023). On Entropy Estimation of Inverse Weibull Distribution under Improved Adaptive Progressively Type-II Censoring with Applications. Axioms, 12(8), 751. https://doi.org/10.3390/axioms12080751