New Results for the Investigation of the Asymptotic Behavior of Solutions of Nonlinear Perturbed Differential Equations
Abstract
:1. Introduction
Relevant Literature Review
2. Main Results
2.1. Notation and Preliminary Results
2.2. Oscillation Criteria
2.3. Examples and Discussion
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alnafisah, Y.; Ahmed, H.M. Neutral delay Hilfer fractional integrodifferential equations with fractional Brownian motion. Evol. Equ. Control Theory 2022, 11, 925. [Google Scholar]
- Omar, O.A.; Alnafisah, Y.; Elbarkouky, R.A.; Ahmed, H.M. COVID-19 deterministic and stochastic modelling with optimized daily vaccinations in Saudi Arabia. Results Phys. 2021, 28, 104629. [Google Scholar]
- Saeed, A.M.; Alotaibi, S.H. Numerical methods for solving the home heating system. Adv. Dyn. Syst. Appl. 2020, 17, 581–598. [Google Scholar]
- Saeed, A.M.; Lotfy, K.; Ahmed, M.H. Magnetic field influence of Photo-Mechanical-Thermal waves for optically excited microelongated semiconductor. Mathematics 2022, 10, 4567. [Google Scholar]
- Cubiotti, P.; Yao, J.C. Some qualitative properties of solutions of higher-order lower semicontinus differential inclusions. J. Nonlinear Var. Anal. 2022, 6, 585–599. [Google Scholar]
- Hu, X.; Lan, Y.Y. Multiple solutions of Kirchhoff equations with a small perturbations. J. Nonlinear Funct. Anal. 2022, 2022, 19. [Google Scholar] [CrossRef]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Transact. Am. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Erbe, L.H.; Kong, Q.; Zhong, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, W.-T. Nonoscillation and oscillation: Theory for functional differential equations. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 2004; Volume 267. [Google Scholar]
- Palencia, J.L.D. Travelling waves and instability in a Fisher–KPP problem with a nonlinear advection and a high-order diffusion. Eur. Phys. J. Plus 2021, 136, 774. [Google Scholar]
- Bonheure, D.; Hamel, F. One-dimensional symmetry and Liouville type results for the fourth order Allen-Cahn equation in R N. Chin. Ann. Math. Ser. B 2017, 38, 149–172. [Google Scholar]
- Koplatadze, R.; Kvinkadze, G.; Stavroulakis, I.P. Properties A and B of n-th order linear differential equations with deviating argument. Georgian Math. J. 1999, 6, 553–566. [Google Scholar] [CrossRef]
- Grace, S.R.; Lalli, B.S. Oscillation theorems for certain second order perturbed nonlinear differential equation. J. Math. Anal. Appl. 1980, 77, 205–214. [Google Scholar] [CrossRef]
- Grace, S.R.; Lalli, B.S. Oscillations in second order differential equations with alternating coefficients. Period. Math. Hung. 1988, 19, 69–78. [Google Scholar] [CrossRef]
- Kartsatos, A.G. Oscillation and nonoscillation for perturbed differential equations. Hiroshima Math. J. 1978, 8, 1–10. [Google Scholar] [CrossRef]
- Kirane, M.; Rogovchenko, Y.V. Oscillation results for a second order damped differential equation with nonmonotonous nonlinearity. J. Math. Anal. Appl. 2000, 1, 118–138. [Google Scholar] [CrossRef]
- Jiang, J.; Li, X. Oscillation theorems for second order quasilinear perturbed differential equations. Appl. Math. Chin. Univ. 2001, 16, 244–250. [Google Scholar]
- Bohner, M.; Saker, S.H. Oscillation criteria for perturbed nonlinear dynamic equations. Math. Comput. Model. 2004, 40, 249–260. [Google Scholar]
- Mustafa, O.G.; Rogovchenko, Y.V. Oscillation of second-order perturbed differential equations. Math. Nachr. 2005, 278, 460–469. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Awrejcewicz, J.; Abdelnaser, A. Criteria for the Oscillation of Solutions to Linear Second-Order Delay Differential Equation with a Damping Term. Axioms 2021, 10, 246. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 60, 1–12. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovska, I. Sharp oscillation criteria for second-order neutral delay differential equations. Math. Meth. Appl. Sci. 2020, 43, 10041–10053. [Google Scholar]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Moaaz, O.; Muhib, A.; Owyed, S.; Mahmoud, E.E.; Abdelnaser, A. Second-order neutral differential equations: Improved criteria for testing the oscillation. Jap. J. Math. 2021, 2021, 6665103. [Google Scholar]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp results for oscillation of second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2023, 4, 1–23. [Google Scholar] [CrossRef]
- Dzurina, L.; Grace, S.R.; Jadlovská, I. On nonexistence of Kneser solutions of third-order neutral delay differential equations. Appl. Math. Lett. 2019, 88, 193–200. [Google Scholar] [CrossRef]
- Jadlovská, I.; Chatzarakis, G.E.; Džurina, J.; Grace, S.R. On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations. Mathematics 2021, 9, 1675. [Google Scholar] [CrossRef]
- Moaaz, O.; Mahmoud, E.E.; Alharbi, W.R. Third-order neutral delay differential equations: New iterative criteria for oscillation. J. Funct. Space 2020, 2020, 6666061. [Google Scholar] [CrossRef]
- Onose, H. Forced oscillation for functional differential equations of fourth order. Bull. Fac. Sci. Ibaraki Univ. Ser. A 1979, 11, 57–63. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; Manojlovic, J.V. Oscillation criteria for certain fourth order nonlinear functional differential equations. Math. Comput. Model. 2006, 44, 163–187. [Google Scholar] [CrossRef]
- Grace, S.R.; Agarwal, R.P.; Graef, J.R. Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 2009, 30, 75–88. [Google Scholar] [CrossRef]
- Wu, F. Existence of eventually positive solutions of fourth order quasilinear differential equations. J. Math. Anal. Appl. 2012, 389, 632–646. [Google Scholar] [CrossRef]
- Kamo, K.I.; Usami, H. Oscillation theorems for fourth order quasilinear ordinary differential equations. Stud. Sci. Math. Hung. 2002, 39, 385–406. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef]
- Kusano, T.; Naito, M. Comparison theorems for functional-differential equations with deviating arguments. Math. Soc. Jpn. 1981, 33, 509–532. [Google Scholar] [CrossRef]
- Nehari, Z. Oscillation criteria for second-order linear differential equations. Trans. Am. Math. Soc. 1957, 85, 428–445. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Albalawi, W. New Results for the Investigation of the Asymptotic Behavior of Solutions of Nonlinear Perturbed Differential Equations. Axioms 2023, 12, 841. https://doi.org/10.3390/axioms12090841
Moaaz O, Albalawi W. New Results for the Investigation of the Asymptotic Behavior of Solutions of Nonlinear Perturbed Differential Equations. Axioms. 2023; 12(9):841. https://doi.org/10.3390/axioms12090841
Chicago/Turabian StyleMoaaz, Osama, and Wedad Albalawi. 2023. "New Results for the Investigation of the Asymptotic Behavior of Solutions of Nonlinear Perturbed Differential Equations" Axioms 12, no. 9: 841. https://doi.org/10.3390/axioms12090841
APA StyleMoaaz, O., & Albalawi, W. (2023). New Results for the Investigation of the Asymptotic Behavior of Solutions of Nonlinear Perturbed Differential Equations. Axioms, 12(9), 841. https://doi.org/10.3390/axioms12090841