Representations of Generalized Loop Planar Galilean Conformal Algebras W(Γ)
Abstract
:1. Introduction
2. Verma Modules of
- So, we have
3. Harish-Chandra Modules of
4. Whittaker Modules of
- (i)
- acts locally and nilpotently on V. In particular, acts locally and nilpotently on V for any .
- (ii)
- All Whittaker vectors in V are of type φ.
- (iii)
- Any nonzero submodule of V contains a Whittaker vector of type φ.
- (iv)
- If the vector space of Whittaker vectors of V is one-dimensional, then V is simple.
- (1)
- maxdeg.
- (2)
- Suppose that and is the minimal, such that or , then we have
- (1)
- maxdeg.
- (2)
- We can get
- (1)
- maxdeg.
- (2)
- If for all , then we get
- (3)
- If for all , for all and or , then we have
- (1)
- We have
- (2)
- If , then .If , then .
- (3)
- We denote and . Then, we have
- (1)
- maxdeg.
- (2)
- If for all , then we can get
- (3)
- If for all , for all and or , then we have
5. Some Properties for the Whittaker Modules of
- (1)
- For , , we have
- (2)
- Suppose V is a Whittaker module for , let . Regarding V as a -module under the dot action, then is a finite dimensional submodule of V.
6. Rank 1 Free -Modules of
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bagchi, A.; Gopakumar, R. Galilean conformal algebras and AdS/CFT. J. High Energy Phys. 2009, 7, 37. [Google Scholar] [CrossRef]
- Hosseiny, A.; Rouhani, S. Affine Extension of Galilean Conformal Algebra in 2+1 Dimensions. J. Math. Phys. 2010, 51, 052307. [Google Scholar] [CrossRef]
- Martelli, D.; Tachikawa, Y. Comments on Galilean conformal field theories and their geometric realization. J. High. Energy Phys. 2010, 5, 91. [Google Scholar] [CrossRef]
- Aizawa, N. Some properties of planar Galilean conformal algebras. In Lie Theory and Its Applications in Physics; Springer Proceedings in Mathematics & Statistics; Springer: Tokyo, Japan, 2013; Volume 36, pp. 301–309. [Google Scholar]
- Yang, Y.; Chen, S.; Tang, X. Structures of generalized loop planar Galilean conformal algebras. Comm. Algebra 2022, 50, 2517–2531. [Google Scholar] [CrossRef]
- Mathieu, O. Classification of Harish-Chandra modules over the Virasoro Lie algebra. Invent. Math. 1992, 107, 225–234. [Google Scholar] [CrossRef]
- Guo, X.; Lu, R.; Zhao, K. Simple Harish-Chandra modules, intermediate series modules, and Verma modules over the loop-Virasoro algebra. Forum Math. 2011, 23, 1029–1052. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, C. Harish-Chandra modules over the twisted Heisenberg-Virasoro algebra. J. Math. Phys. 2008, 49, 012901. [Google Scholar] [CrossRef]
- Liu, D. Classification of Harish-Chandra modules over some Lie algebras related to the Virasoro algebra. J. Algebra 2016, 447, 548–559. [Google Scholar] [CrossRef]
- Cheng, Y.; Su, Y. Generalized Verma modules over some Block algebras. Front. Math. China 2008, 3, 37–47. [Google Scholar] [CrossRef]
- Jiang, Q.; Wu, Y. Verma modules over a Block Lie algebra. Algebra Colloq. 2008, 15, 235–240. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, W. Verma modules over the W(2,2) algebras. J. Geom. Phys. 2015, 45, 118–127. [Google Scholar] [CrossRef]
- Li, Z.; Tan, S. Verma modules for rank two Heisenberg-Virasoro algebra. Sci. China Math. 2019, 59, 1259–1270. [Google Scholar] [CrossRef]
- Ruan, W.; Zhang, H.; Sun, J. Automorphisms and Verma modules for Generalized 2-dim Affine-Virasoro algebra. Algebra Colloq. 2017, 24, 285–296. [Google Scholar] [CrossRef]
- Shen, R.; Jiang, Q.; Su, Y. Verma modules over the generalized Heisenberg-Virasoro algebra. Comm. Algebra 2008, 36, 1464–1473. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J. Algebra 2009, 322, 1379–1394. [Google Scholar] [CrossRef]
- Xin, B.; Wu, Y. Generalized Verma modules over Lie algebras of Weyl type. Algebra Collq. 2009, 16, 131–142. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Zhao, K. Verma modules over generalized Virasoro algebras Vir[G]. J. Pure Appl. Algebra 2003, 177, 61–69. [Google Scholar] [CrossRef]
- Liu, D.; Pei, Y.; Xia, L. Whittaker modules for the super-Virasoro algebras. J. Algebra Appl. 2019, 18, 456–469. [Google Scholar] [CrossRef]
- Bagci, I.; Christodoulopoulou, K.; Wiesner, E. Whittaker categories and Whittaker modules for Lie superalgebras. Comm. Algebra 2014, 42, 4932–4947. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, R.; Zhang, J. Whittaker modules and quasi-Whittaker modules for the Euclidean Lie algebra e(3). J. Pure Appl. Algebra 2016, 220, 1419–1433. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, X. Simple singular Whittaker modules over the Schrödinger algebra. Comm. Math. Stat. 2019, 63, 73–98. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, C. Whittaker modules for the twisted affine Nappi-Witten Lie algebra. J. Algebra 2020, 546, 37–61. [Google Scholar] [CrossRef]
- Adamovic, D.; Lu, R.; Zhao, K. Whittaker modules for the affine Lie algebra . Adv. Math. 2016, 289, 438–479. [Google Scholar] [CrossRef]
- Gao, D.; Ma, Y.; Zhao, K. Non-weight modules over the mirror Heisenberg-Virasoro algebra. Sci. China Math. 2022, 65, 2243–2254. [Google Scholar] [CrossRef]
- Lian, H.; Zhang, X. Whittaker modules for the derivation Lie algebra of torus with two variables. Acta Math. Sin. 2016, 32, 1177–1188. [Google Scholar] [CrossRef]
- Liu, X.; Guo, X. Whittaker modules over loop Virasoro algebra. Front. Math. China 2013, 8, 393–410. [Google Scholar] [CrossRef]
- Nilsson, J. Simple sln+1-module structures on U(h). J. Algebra 2015, 424, 294–329. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, K. and Wn-module structures on U(h). J. Algebra 2014, 424, 357–375. [Google Scholar] [CrossRef]
- Chen, H.; Guo, X. Non-weight modules over the Heisenberg-Virasoro algebra and the W algebra W(2,2). J. Algebra Appl. 2017, 16, 1750097. [Google Scholar] [CrossRef]
- Han, J.; Chen, Q.; Su, Y. Modules over the algebra Vir(a,b). Linear Algebra Appl. 2017, 515, 11–23. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y. Non-weight modules over algebras related to the Virasoro algebra. J. Geom. Phys. 2018, 134, 11–18. [Google Scholar] [CrossRef]
- Gao, D.; Gao, Y. Representations of the planar Galilean conformal algebra. Commun. Math. Phys. 2022, 391, 199–221. [Google Scholar] [CrossRef]
- Mazorchuk, V. Verma modules over generalized Witt algebras. Compos. Math. 1999, 14, 21–35. [Google Scholar] [CrossRef]
- Wang, X. Evaluation modules of Lie algebras with a triangular decomposition. Adv. Math. 2004, 33, 685–690. [Google Scholar]
- Cai, Y.; Lü, R.; Wang, Y. Classification of simple Harish-Chandra modules for map (super)algebras related to the Virasoro algebra. J. Algebra 2021, 570, 397–415. [Google Scholar] [CrossRef]
- Fa, H.; Ding, L.; Li, J. Classification of modules of the intermediate series over a Schrödinger-Virasoro type. J. Univ. Sci. Technol. China 2010, 6, 590–593. [Google Scholar]
- Chen, Q.; Han, J. Non-weight modules over the affine-Virasoro algebra of type A1. J. Math. Phys. 2019, 60, 071707. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Yang, H. Whittaker modules for the planar Galilean conformal algebra and its central extension. Comm. Algebra 2022, 50, 5042–5059. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Wang, X. Representations of Generalized Loop Planar Galilean Conformal Algebras W(Γ). Axioms 2023, 12, 863. https://doi.org/10.3390/axioms12090863
Yang Y, Wang X. Representations of Generalized Loop Planar Galilean Conformal Algebras W(Γ). Axioms. 2023; 12(9):863. https://doi.org/10.3390/axioms12090863
Chicago/Turabian StyleYang, Yu, and Xingtao Wang. 2023. "Representations of Generalized Loop Planar Galilean Conformal Algebras W(Γ)" Axioms 12, no. 9: 863. https://doi.org/10.3390/axioms12090863
APA StyleYang, Y., & Wang, X. (2023). Representations of Generalized Loop Planar Galilean Conformal Algebras W(Γ). Axioms, 12(9), 863. https://doi.org/10.3390/axioms12090863