Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory
Abstract
:1. Introduction
- In Section 2, we will present main results, which give estimates for the majorization difference. Also, in this section, we will give bounds for the Slater and Jensen differences, which can be deduced from the major main results by performing some particular substitutions.
- In Section 3, we will highlight the conditions under which the main results will give better estimations.
- In Section 4, we will discuss how the main results can be applied in information theory.
- Section 5 is devoted to the concluding remarks on the article.
2. Main Results
3. Discussion about the Betterness of the Main Results
- (1)
- (2)
- By utilizing the idea of the proof of the result given in [40], it can be proven that the term “” is non-negative by imposing the conditions that is a convex function and
- (i)
- is a decreasing tuple with
- (ii)
- is an increasing tuple such that
- (3)
- If and are monotonic in the same sense and satisfying the condition
- (4)
- By adopting the method of the proof of the result given in [54] with the assumptions that the function is an increasing convex function and the tuples and are monotonic in the parallel direction with
4. Applications in Information Theory
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomez, I.S.; da Costa, B.G.; dos Santos, M.A. Majorization and dynamics of continuous distributions. Entropy 2019, 590, 21. [Google Scholar] [CrossRef]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L.P. Inequalities with Applications to Engineering; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar]
- Grinalatt, M.; Linnainmaa, J.T. Jensen’s inquality, parameter uncertainty, and multiperiod investment. Rev. Asset Pricing Stud. 2001, 1, 1–34. [Google Scholar] [CrossRef]
- Ullah, H.; Adil Khan, M.; Pečarić, J. New bounds for soft margin estimator via concavity of Gaussian weighting function. Adv. Differ. Equ. 2020, 2020, 644. [Google Scholar] [CrossRef]
- Adil Khan, M.; Sohail, A.; Ullah, H.; Saeed, T. Estimations of the Jensen gap and their applications based on 6–convexity. Mathematics 2023, 11, 1957. [Google Scholar] [CrossRef]
- Horváth, L.; Pečarić, Đ.; Pečarić, J. Estimations of f–and Rényi divergences by using a cyclic refinement of the Jensen’s inequality. Bull. Malays. Math. Sci. Soc. 2019, 42, 933–946. [Google Scholar] [CrossRef]
- Borwein, J.; Lewis, A. Convex Analysis and Nonlinear Optimization, Theory and Examples; Springer: New York, NY, USA, 2000. [Google Scholar]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I.; Arnold, B.C. Inequalities: Theory of Majorization and Its Applications, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Theory of Differential and Integral Inequalities with Initial Time Difference and Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Dragomir, S.S.; Pearce, E.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Adil Khan, M.; Khalid, S.; Pečarić, J. Refinements of some majorization type inequalities. J. Math. Inequal. 2013, 7, 73–92. [Google Scholar] [CrossRef]
- Lin, M.; Wolkowicz, H. An eigenvalue majorization inequality for positive semidefinite block matrices. Linear Multilinear Algebra 2012, 60, 1365–1368. [Google Scholar] [CrossRef]
- You, X.; Adil Khan, M.; Ullah, H.; Saeed, T. Improvements of Slater’s inequality by means of 4-convexity and its applications. Mathematics 2022, 10, 1274. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, 1–13. [Google Scholar] [CrossRef]
- Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
- Pečarić, J.; Persson, L.E.; Tong, Y.L. Convex Functions, Partial Ordering and Statistical Applications; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Ullah, H.; Adil Khan, M.; Saeed, T.; Sayed, Z.M.M.M. Some improvements of Jensen’s inequality via 4–convexity and applications. J. Funct. Spaces 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)- onvex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Adeel, M.; Khan, K.A.; Pečarić, Đ.; Pečarić, J. Levinson type inequalities for higher order convex functions via Abel–Gontscharoff interpolation. Adv. Differ. Equ. 2019, 2019, 430. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Adeel, M.; Khan, K.A.; Pečarić, Đ.; Pečarić, J. Estimation of f–divergence and Shannon entropy by Levinson type inequalities for higher–order convex functions via Taylor polynomial. J. Math. Compt. Sci. 2020, 21, 322–334. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications. A Contemporary Approach; CMS Books in Mathematics; Springer: New York, NY, USA, 2006; Volume 23. [Google Scholar]
- Sajjad, M.; Mehmood, I.; Abbasand, N.; Baik, S.W. Basis pursuit denoising-based image super resolution using a redundant set of atoms. Signal Image Video Process. 2016, 10, 181–188. [Google Scholar] [CrossRef]
- Vasić, Ž. Mi̇j̇aj̇lovi̇ć, P.M. On an index set function connected with Jensen inequality. Univ. Beograd Publ. Elektroteh. Fak. Ser. Mat. Fiz. 1976, 544–576, 110–112. [Google Scholar]
- Vespignani, A. Modelling dynamical processes in complex socio-technical systems. Nat. Phys. 2012, 8, 32–39. [Google Scholar] [CrossRef]
- Kleiner, A.; Moldovanu, B.; Strack, P. Extreme points and majorization: Economic applications. Econometrica 2021, 89, 1557–1593. [Google Scholar] [CrossRef]
- Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Rasheed, A.; Hussain, S.; Shah, S.G.A.; Darus, M.; Lodhi, S. Majorization problem for two subclasses of meromorphic functions associated with a convolution operator. AIMS Math. 2022, 5, 5157–5170. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.-M. Post quantum integral inequalities of Hermite-Hadamard-type associated with co-ordinated higherorder generalized strongly pre-invex and quasi-pre-invex mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some Fejer type integral inequalities for geometrically–arithmetically–convex functions with applications. Filomat 2018, 32, 2193–2206. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 1–14. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Khan, M.; Chu, Y.-M. The effects of L-shaped heat source in a quarter-tube enclosure filled with MHD nanofuid on heat transfer and irreversibilities, using LBM: Numerical data, optimization using neural network algorithm (ANN). J. Therm. Anal. Calorim. 2021, 144, 2435–2448. [Google Scholar] [CrossRef]
- Chen, S.-B.; Rashid, S.; Noor, M.A.; Hammouch, Z.; Chu, Y.-M. New fractional approaches for n-polynomial P-convexity with applications in special function theory. Adv. Differ. Equ. 2020, 2020, 543. [Google Scholar] [CrossRef]
- Niaz, T.; Khan, K.A.; Pečarić, J. On refinement of Jensen’s inequality for 3–convex function at a point. Turk. J. Inequal. 2020, 4, 70–80. [Google Scholar]
- Pečarić, J.E. A companion inequality to Jensen–Steffensen’s inequality. J. Approx. Theory 1985, 44, 289–291. [Google Scholar] [CrossRef]
- Ghadimi, S.; Lan, G.; Zhang, H. Generalized uniformly optimal methods for non-linear programming. J. Sci. Comput. 2019, 79, 1854–1881. [Google Scholar] [CrossRef]
- Mercer, A. McD. A Variant of Jensen’s Inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Maligranda, L.; Pečarić, J.; Persson, L.E. Weighted Favard and Berwald inequalities. J. Math. Anal. Appl. 1995, 190, 248–262. [Google Scholar] [CrossRef]
- Ullah, H.; Adil Khan, M.; Saeed, T. Determination of bounds for the Jensen gap and its applications. Mathematics 2021, 9, 3132. [Google Scholar] [CrossRef]
- Micić, J.; Pečarić, J.; Jurica, P. Refined Jensen’s operator inequality with condition on spectra. Oper. Matrices 2013, 7, 293–308. [Google Scholar]
- Adil Khan, M.; Ullah, H.; Saeed, T. Some estimations of the Jensen difference and applications. Math. Meth. Appl. Sci. 2023, 46, 5863–5892. [Google Scholar] [CrossRef]
- White, C.C.; Harrington, D.P. Application of Jensen’s inequality to adaptive suboptimal design. J. Optim. Theory Appl. 1980, 32, 89–99. [Google Scholar] [CrossRef]
- Viloria, J.M.; Vivas-Cortez, M. Jensen’s inequality for convex functions on N–coordinates. Appl. Math. Inf. Sci. 2020, 12, 931–935. [Google Scholar] [CrossRef]
- Deng, Y.; Ullah, H.; Adil Khan, M.; Iqbal, S.; Wu, S. Refinements of Jensen’s inequality via majorization results with applications in the information theory. J. Math. 2021, 2021, 1951799. [Google Scholar] [CrossRef]
- Slater, M.L. A companion inequality to Jensen’s inequality. J. Approx. Theory 1981, 32, 160–166. [Google Scholar] [CrossRef]
- Goel, A.; Meyerson, A.; Plotkin, S. Approximate majorization and fair online load balancing. In Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, 9–11 January 2000; SIAM: Philadelphia, PA, USA, 2000; pp. 384–390. [Google Scholar]
- Barnett, N.S.; Cerone, P.; Dragomir, S.S. Majorisation inequalities for Stieltjes integrals. Appl. Math. Lett. 2009, 22, 416–421. [Google Scholar] [CrossRef]
- Karamata, J. Sur une inégalité relative aux fonctions convexes. Publ. Math. Univ. Belgrade 1932, 1, 145–148. [Google Scholar]
- Siddique, N.; Imran, M.; Khan, K.A.; Pečarić, J. Majorization inequalities via Green functions and Fink’s identity with applications to Shannon entropy. J. Inequal. Appl. 2020, 2020, 192. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Fuchs, L. A new proof of an inequality of Hardy–Littlewood–Pólya. Mat. Tidsskr. B 1947, 13, 53–54. [Google Scholar]
- Dragomir, S.S. Some majorisation type discrete inequalities for convex functions. J. Math. Inequal. Appl. 2004, 7, 207–216. [Google Scholar] [CrossRef]
- Adil Khan, M.; Wu, S.-H.; Ullah, H.; Chu, Y.-M. Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, 2019, 16. [Google Scholar] [CrossRef]
- Wu, S.; Adil Khan, M.; Haleemzai, H.U. Refinements of majorization inequality involving convex functions via Taylor’s theorem with mean value form of the remainder. Mathematics 2019, 7, 663. [Google Scholar] [CrossRef]
- Saeed, T.; Adil Khan, M.; Ullah, H. Refinements of Jensen’s inequality and applications. AIMS Math. 2022, 7, 5328–5346. [Google Scholar] [CrossRef]
- Adil Khan, M.; Ullah, H.; Saeed, T.; Alsulami, H.H.; Sayed, Z.M.M.M.; Alshehri, A.M. Estimations of the slater gap via convexity and its applications in information theory. Math. Probl. Eng. 2022, 2022, 1750331. [Google Scholar] [CrossRef]
- Benish, W.A. A review of the application of information theory to clinical diagnostic testing. Entropy 2020, 22, 97. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basir, A.; Khan, M.A.; Ullah, H.; Almalki, Y.; Chasreechai, S.; Sitthiwirattham, T. Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory. Axioms 2023, 12, 885. https://doi.org/10.3390/axioms12090885
Basir A, Khan MA, Ullah H, Almalki Y, Chasreechai S, Sitthiwirattham T. Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory. Axioms. 2023; 12(9):885. https://doi.org/10.3390/axioms12090885
Chicago/Turabian StyleBasir, Abdul, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, and Thanin Sitthiwirattham. 2023. "Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory" Axioms 12, no. 9: 885. https://doi.org/10.3390/axioms12090885
APA StyleBasir, A., Khan, M. A., Ullah, H., Almalki, Y., Chasreechai, S., & Sitthiwirattham, T. (2023). Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory. Axioms, 12(9), 885. https://doi.org/10.3390/axioms12090885