Ratio-Type Estimator for Estimating the Neutrosophic Population Mean in Simple Random Sampling under Intuitionistic Fuzzy Cost Function
Abstract
:1. Introduction
1.1. Research Gap
1.2. Scope of the Study
- To decide the sample size under a nonrandom, uncertain measurement cost.
- To propose a more efficient neutrosophic estimator for estimating the population mean of the neutrosophic study variable, utilizing all indeterminate values of the neutrosophic auxiliary variable.
2. Intuitionistic Fuzzy Cost Function
3. Neutrosophic Estimators of Population Mean
3.1. Existing Neutrosophic Estimators
3.2. Proposed Generalized Neutrosophic Ratio-Type Estimators Using Neutrosophic Subsidiary Information
3.2.1. Neutrosophic Ratio Class of Estimator
3.2.2. Neutrosophic Exponential Class of Estimator
3.2.3. Neutrosophic Ratio–Exponential Class of Estimator
4. Efficiency Comparison
5. Simulation Study
- The first neutrosophic data set, containing 3000 values, is generated from with and
- The second neutrosophic data set, containing 3000 values, is generated from with and
- The third neutrosophic data set, containing 3000 values, is generated from with and
Data Summary and Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Singh, S. Advanced Sampling Theory with Applications: How Michael “Selected" Amy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Volume 2. [Google Scholar]
- Singh, R.; Mangat, N.S. Elements of Survey Sampling; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 15. [Google Scholar]
- Bahl, S.; Tuteja, R. Ratio and product type exponential estimators. J. Inf. Optim. Sci. 1991, 12, 159–164. [Google Scholar] [CrossRef]
- Kadilar, C.; Cingi, H. Improvement in estimating the population mean in simple random sampling. Appl. Math. Lett. 2006, 19, 75–79. [Google Scholar] [CrossRef]
- Singh, R.; Chauhan, P.; Sawan, N.; Smarandache, F. Auxiliary Information and a priori Values in Construction of Improved Estimators; Infinite Study, 2007; p. 33. [Google Scholar]
- Gupta, S.; Shabbir, J. On improvement in estimating the population mean in simple random sampling. J. Appl. Stat. 2008, 35, 559–566. [Google Scholar] [CrossRef]
- Al-Omari, A.I.; Jemain, A.A.; Ibrahim, K. New ratio estimators of the mean using simple random sampling and ranked set sampling methods. Investig. Oper. 2009, 30. [Google Scholar]
- Upadhyaya, L.N.; Singh, H.P.; Chatterjee, S.; Yadav, R. Improved ratio and product exponential type estimators. J. Stat. Theory Pract. 2011, 5, 285–302. [Google Scholar] [CrossRef]
- Haq, A.; Shabbir, J. Improved family of ratio estimators in simple and stratified random sampling. Commun. Stat. Theory Methods 2013, 42, 782–799. [Google Scholar] [CrossRef]
- Shabbir, J.; Haq, A.; Gupta, S. A new difference-cum-exponential type estimator of finite population mean in simple random sampling. Rev. Colomb. EstadÍStica 2014, 37, 199–211. [Google Scholar] [CrossRef]
- Yadav, R.; Upadhyaya, L.N.; Singh, H.P.; Chatterjee, S. Improved ratio and product exponential type estimators for finite population mean in stratified random sampling. Commun. Stat. Theory Methods 2014, 43, 3269–3285. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci. 1975, 8, 301–357. [Google Scholar] [CrossRef]
- Helton, J.C.; Johnson, J.D.; Sallaberry, C.J.; Storlie, C.B. Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliab. Eng. Syst. Safety 2006, 91, 1175–1209. [Google Scholar] [CrossRef]
- Lin, L.; Lee, H.M. Fuzzy assessment method on sampling survey analysis. Expert Syst. Appl. 2009, 36, 5955–5961. [Google Scholar] [CrossRef]
- Lin, L.; Lee, H.M. Fuzzy assessment for sampling survey defuzzification by signed distance method. Expert Syst. Appl. 2010, 37, 7852–7857. [Google Scholar] [CrossRef]
- Sinova, B.; Rosa De Sáa, S.D.L.; Lubiano, M.A.; Gil, M.Á. An overview on the statistical central tendency for fuzzy data sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2015, 23 (Suppl. S1), 105–132. [Google Scholar] [CrossRef]
- Galesic, M.; Kause, A.; Gaissmaier, W. A sampling framework for uncertainty in individual environmental decisions. Top. Cogn. Sci. 2016, 8, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Lu, Z.; Ling, C.; Wang, L. Fuzzy importance sampling method for estimating failure possibility. Fuzzy Sets Syst. 2021, 424, 170–184. [Google Scholar] [CrossRef]
- Kesemen, O.; Tiryaki, B.K.; Tezel, Ö.; Özkul, E.; Naz, E. Random sampling with fuzzy replacement. Expert Syst. Appl. 2021, 185, 115602. [Google Scholar] [CrossRef]
- Smarandache, F. Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability; Sitech & Education Publishing: Columbus, OH, USA, 2013. [Google Scholar]
- Smarandache, F. Introduction to Neutrosophic Statistics; Sitech & Education Publishing: Columbus, OH, USA, 2014. [Google Scholar]
- Aslam, M. A new sampling plan using neutrosophic process loss consideration. Symmetry 2018, 10, 132. [Google Scholar] [CrossRef]
- Tahir, Z.; Khan, H.; Aslam, M.; Shabbir, J.; Mahmood, Y.; Smarandache, F. Neutrosophic ratio-type estimators for estimating the population mean. Complex Intell. Syst. 2021, 7, 2991–3001. [Google Scholar] [CrossRef]
- Kumar, S.; Kour, S.; Choudhary, M.; Sharma, V. Determination of Population Mean Using Neutrosophic, Exponential-Type Estimator. Lobachevskii J. Math. 2022, 43, 3359–3367. [Google Scholar] [CrossRef]
- Vishwakarma, G.K.; Singh, A. Generalized estimator for computation of population mean under neutrosophic ranked set technique: An application to solar energy data. Comput. Appl. Math. 2022, 41, 144. [Google Scholar] [CrossRef]
- Singh, R.; Smarandache, F.; Mishra, R. Generalized robust-type neutrosophic ratio estimators of pharmaceutical daily stock prices. In Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2023; pp. 417–429. [Google Scholar]
- Yadav, S.K.; Smarandache, F. Generalized Neutrosophic Sampling Strategy for Elevated estimation of Population Mean. Neutrosophic Sets Syst. 2023, 53, 14. [Google Scholar]
- Alomair, A.M.; Shahzad, U. Neutrosophic Mean Estimation of Sensitive and Non-Sensitive Variables with Robust Hartley–Ross-Type Estimators. Axioms 2023, 12, 578. [Google Scholar] [CrossRef]
S,No | |||||
---|---|---|---|---|---|
1 | 1 | 0 | , [26] | , [26] | |
2 | 1 | 1 | , [26] | , [30] | |
3 | 1 | , [26] | |||
4 | 1 | , [26] | |||
5 | , [26] | ||||
6 | |||||
7 | |||||
8 | |||||
9 | |||||
10 | |||||
11 | |||||
12 | |||||
13 | |||||
14 | |||||
15 | |||||
16 | |||||
17 | |||||
18 | |||||
19 | |||||
20 | |||||
21 | |||||
22 | |||||
23 | |||||
24 | |||||
25 | |||||
26 | |||||
27 | |||||
28 | |||||
29 | |||||
30 | |||||
31 |
Variable | Mean | Variance | CV | |||
---|---|---|---|---|---|---|
YN | [89.96268, 129.13892] | [24.81400, 81.61350] | [0.05537, 0.06996] | [0.00322, −0.06089] | [−0.10347, −0.16364] | [0.09739 , −0.39750] |
XN | [129.83972, 249.86187] | [99.91385, 35.02842] | [0.07698, 0.02369] | [0.05101, −0.01263] | [0.05193, −0.02479] | |
XS | 35.34425 | 13.96304 | 0.10572 | 0.06596 | 0.04418 |
Variable | Mean | Variance | CV | |||
---|---|---|---|---|---|---|
YN | [84.97644, 125.21253] | [9.42978, 50.66704] | [0.03614, 0.05685] | [−0.00468, 0.00747] | [−0.02556, 0.03357] | [0.38504, 0.51247] |
XN | [20.01850, 25.15033] | [6.11129, 24.03838] | [0.12349, 0.19494] | [0.04325, 0.04441] | [0.12058, 0.00489] | [0.00000, 0.00000] |
XS | 1.81335 | 1.59007 | 0.69539 | 0.72147 | 0.00965 |
Variable | Mean | Variance | CV | |||
---|---|---|---|---|---|---|
YN | [13.08261, 28.38166] | [49.26777, 81.40849] | [0.53652, 0.31790] | [−0.01568, 0.01242] | [−0.07760, 0.08264] | [−0.40618, −0.50048] |
XN | [11.04027, 25.95948] | [25.87714, 8.88683] | [0.46076, 0.11484] | [0.01566, −0.03767] | [−0.02383, −0.07052] | [0.00000, 0.00000] |
XS | 4.40090 | 3.03458 | 0.39583 | 0.07965 | −0.13579 |
S,No | Estimator | Simulated Population 1 | Simulated Population 2 | Simulated Population 3 | |||
---|---|---|---|---|---|---|---|
MSE | MSET | MSE | MSET | MSE | MSET | ||
1 | [2.62039, 4.47995] | 7.10033 | [3.75781, 18.57995] | 22.33776 | [4.75908, 4.81816] | 9.57723 | |
2 | [2.61829, 4.47979] | 7.09808 | [3.71045, 18.27212] | 21.98257 | [4.59128, 4.80931] | 9.40059 | |
3 | [2.61897, 4.48011] | 7.09908 | [3.71156, 18.57214] | 22.28370 | [4.76827, 4.82364] | 9.59190 | |
4 | [2.58068, 4.48615] | 7.06683 | [3.39087, 2.81246] | 6.20333 | [2.69187, 4.95460] | 7.64646 | |
5 | [0.98961, 3.15546] | 4.14507 | [0.51214, 2.75074] | 3.26287 | [2.00787, 2.93006] | 4.93793 | |
6 | [0.99042, 3.06895] | 4.05936 | [1.23625, 1.65660] | 2.89285 | [1.87344, 2.61138] | 4.48481 | |
7 | [0.98948, 3.15572] | 4.14519 | [0.40905, 2.07641] | 2.48546 | [2.00345, 2.95787] | 4.96132 | |
8 | [0.99028, 3.06949] | 4.05977 | [0.94167, 1.73141] | 2.67308 | [1.88003, 2.66911] | 4.54914 | |
9 | [0.98407, 3.46520] | 4.44927 | [0.32600, 1.57056] | 1.89656 | [1.63234, 3.23046] | 4.86280 | |
10 | [0.99056, 3.06839] | 4.05895 | [1.74167, 1.54196] | 3.28363 | [1.86556, 2.54490] | 4.41046 | |
11 | [0.98951, 3.15552] | 4.14503 | [0.48684, 2.50371] | 2.99054 | [2.00280, 2.93869] | 4.94149 | |
12 | [0.99032, 3.06907] | 4.05939 | [1.17250, 1.68099] | 2.85349 | [1.88101, 2.62905] | 4.51006 | |
13 | [0.98410, 3.46564] | 4.44974 | [0.32070, 1.52289] | 1.84360 | [1.63292, 4.40972] | 6.04264 | |
14 | [0.99052, 3.06882] | 4.05934 | [1.30635, 1.62891] | 2.93526 | [1.86413, 2.59294] | 4.45707 | |
15 | [0.97836, 2.74398] | 3.72234 | [1.22364, 2.72553] | 3.94916 | [2.36208, 3.59385] | 5.95593 | |
16 | [0.98132, 3.23219] | 4.21351 | [0.39378, 1.92481] | 2.31859 | [1.95815, 3.20884] | 5.16699 | |
17 | [0.98220, 3.23056] | 4.21276 | [0.36297, 2.00563] | 2.36860 | [1.96431, 3.29127] | 5.25558 | |
18 | [0.98190, 3.23926] | 4.22116 | [0.33513, 1.99082] | 2.32595 | [1.95313, 3.24686] | 5.19999 | |
19 | [0.98168, 3.25507] | 4.23675 | [0.32765, 1.59527] | 1.92292 | [1.92087, 3.15364] | 5.07451 | |
20 | [0.98219, 3.23055] | 4.21274 | [0.36147, 2.00463] | 2.36610 | [1.96665, 3.29447] | 5.26113 | |
21 | [0.98131, 3.23218] | 4.21349 | [0.42656, 2.27291] | 2.69947 | [1.95905, 3.20774] | 5.16679 | |
22 | [0.98190, 3.23926] | 4.22116 | [0.33513, 1.99082] | 2.32595 | [1.95313, 3.24686] | 5.19999 | |
23 | [0.98167, 3.25509] | 4.23676 | [0.32441, 1.54539] | 1.86980 | [1.91308, 3.14942] | 5.06251 | |
24 | [0.98133, 3.23220] | 4.21353 | [0.35142, 1.68926] | 2.04068 | [1.95820, 3.21005] | 5.16825 | |
25 | [0.98220, 3.23058] | 4.21278 | [0.36536, 2.00646] | 2.37182 | [1.96445, 3.28775] | 5.25220 | |
26 | [0.98190, 3.23926] | 4.22116 | [0.34169, 1.99457] | 2.33626 | [1.95312, 3.24583] | 5.19895 | |
27 | [0.98169, 3.25503] | 4.23671 | [0.33434, 1.64950] | 1.98384 | [1.92042, 3.15824] | 5.07866 | |
28 | [0.98219, 3.23054] | 4.21273 | [0.35578, 2.00233] | 2.35811 | [1.96645, 3.29887] | 5.26533 | |
29 | [0.98189, 3.23927] | 4.22116 | [0.32184, 1.97603] | 2.29787 | [1.95289, 3.24909] | 5.20197 | |
30 | [0.98167, 3.25513] | 4.23680 | [0.31861, 1.48661] | 1.80521 | [1.91375, 3.14357] | 5.05732 |
S,No | Estimator | Simulated Population 1 | Simulated Population 2 | Simulated Population 3 | |||
---|---|---|---|---|---|---|---|
MSE | MSET | MSE | MSET | MSE | MSET | ||
1 | [1.32667, 3.76585] | 5.09252 | [0.97390, 4.38635] | 5.36025 | [2.99634, 3.91834] | 6.91468 | |
2 | [1.32045, 3.76585] | 5.08630 | [0.89588, 4.38635] | 5.28223 | [2.88235, 3.91834] | 6.80069 | |
3 | [0.97510, 3.19551] | 4.17061 | [0.32904, 1.52194] | 1.85098 | [1.98057, 3.07104] | 5.05160 | |
4 | [0.97514, 3.14895] | 4.12410 | [0.44908, 1.80938] | 2.25846 | [1.91241, 2.86686] | 4.77926 | |
5 | [0.97510, 3.19564] | 4.17074 | [0.31966, 1.48246] | 1.80211 | [1.97843, 3.08663] | 5.06507 | |
6 | [0.97514, 3.14926] | 4.12439 | [0.39529, 1.85771] | 2.25299 | [1.91595, 2.90903] | 4.82498 | |
7 | [0.97495, 3.34604] | 4.32099 | [0.34444, 1.74420] | 2.08864 | [1.71884, 2.42036] | 4.13920 | |
8 | [0.97515, 3.14865] | 4.12380 | [0.54777, 1.71790] | 2.26566 | [1.90815, 2.81240] | 4.72054 | |
9 | [0.97510, 3.19554] | 4.17063 | [0.32622, 1.50217] | 1.82839 | [1.97812, 3.07590] | 5.05402 | |
10 | [0.97514, 3.14902] | 4.12416 | [0.43713, 1.82573] | 2.26286 | [1.91647, 2.88017] | 4.79664 | |
11 | [0.97495, 3.34624] | 4.32119 | [0.33839, 1.69765] | 2.03604 | [1.72197, 2.48566] | 4.20764 | |
12 | [0.97515, 3.14888] | 4.12403 | [0.46238, 1.78991] | 2.25229 | [1.90736, 2.85253] | 4.75989 | |
13 | [0.98096, 2.90644] | 3.88739 | [0.44670, 2.32990] | 2.77660 | [2.13764, 3.40307] | 5.54071 | |
14 | [0.98274, 3.23476] | 4.21749 | [0.31897, 1.48289] | 1.80186 | [1.95622, 3.21899] | 5.17521 | |
15 | [0.98321, 3.23394] | 4.21715 | [0.36835, 2.00771] | 2.37606 | [1.95928, 3.25995] | 5.21923 | |
16 | [0.98305, 3.23830] | 4.22135 | [0.35173, 2.00026] | 2.35199 | [1.95371, 3.23801] | 5.19172 | |
17 | [0.98293, 3.24616] | 4.22910 | [0.34593, 1.76452] | 2.11045 | [1.93735, 3.19096] | 5.12831 | |
18 | [0.98321, 3.23394] | 4.21714 | [0.36756, 2.00721] | 2.37477 | [1.96044, 3.26152] | 5.22196 | |
19 | [0.98273, 3.23476] | 4.21748 | [0.32076, 1.48859] | 1.80935 | [1.95667, 3.21843] | 5.17510 | |
20 | [0.98305, 3.23830] | 4.22135 | [0.35173, 2.00026] | 2.35199 | [1.95371, 3.23801] | 5.19172 | |
21 | [0.98293, 3.24618] | 4.22910 | [0.34289, 1.72126] | 2.06415 | [1.93333, 3.18880] | 5.12213 | |
22 | [0.98274, 3.23476] | 4.21750 | [0.31933, 1.50035] | 1.81968 | [1.95624, 3.21960] | 5.17584 | |
23 | [0.98321, 3.23395] | 4.21716 | [0.36961, 2.00812] | 2.37774 | [1.95935, 3.25822] | 5.21757 | |
24 | [0.98305, 3.23830] | 4.22135 | [0.35613, 2.00215] | 2.35828 | [1.95370, 3.23750] | 5.19120 | |
25 | [0.98293, 3.24614] | 4.22908 | [0.35117, 1.80449] | 2.15566 | [1.93712, 3.19331] | 5.13043 | |
26 | [0.98320, 3.23393] | 4.21714 | [0.36446, 2.00606] | 2.37051 | [1.96034, 3.26368] | 5.22402 | |
27 | [0.98304, 3.23830] | 4.22135 | [0.33998, 1.99277] | 2.33275 | [1.95359, 3.23911] | 5.19270 | |
28 | [0.98293, 3.24620] | 4.22912 | [0.33291, 1.63983] | 1.97274 | [1.93368, 3.18579] | 5.11947 |
S,No | Estimator | Simulated Population 1 | Simulated Population 2 | Simulated Population 3 | |||
---|---|---|---|---|---|---|---|
MSE | MSET | MSE | MSET | MSE | MSET | ||
1 | [0.97490, 2.72566] | 3.70056 | [0.31859, 1.48196] | 1.80055 | [1.63155, 2.41954] | 4.05109 | |
2 | [0.97483, 2.72551] | 3.70034 | [0.31858, 1.48176] | 1.80034 | [1.62236, 2.41629] | 4.03865 | |
3 | [0.97483, 2.72549] | 3.70032 | [0.31858, 1.48187] | 1.80045 | [1.62107, 2.41501] | 4.03608 | |
4 | [0.97483, 2.72551] | 3.70034 | [0.31858, 1.48177] | 1.80034 | [1.62233, 2.41638] | 4.03870 | |
5 | [0.97483, 2.72549] | 3.70032 | [0.31858, 1.48188] | 1.80046 | [1.62114, 2.41529] | 4.03644 | |
6 | [0.97483, 2.72555] | 3.70039 | [0.31858, 1.48185] | 1.80043 | [1.61662, 2.41047] | 4.02709 | |
7 | [0.97483, 2.72549] | 3.70032 | [0.31859, 1.48185] | 1.80044 | [1.62099, 2.41463] | 4.03562 | |
8 | [0.97483, 2.72551] | 3.70034 | [0.31858, 1.48176] | 1.80034 | [1.62232, 2.41632] | 4.03864 | |
9 | [0.97483, 2.72549] | 3.70032 | [0.31858, 1.48187] | 1.80045 | [1.62115, 2.41510] | 4.03625 | |
10 | [0.97483, 2.72555] | 3.70039 | [0.31858, 1.48184] | 1.80042 | [1.61671, 2.41010] | 4.02680 | |
11 | [0.97483, 2.72549] | 3.70032 | [0.31859, 1.48186] | 1.80045 | [1.62097, 2.41491] | 4.03588 | |
12 | [0.97484, 2.72539] | 3.70023 | [0.31858, 1.48194] | 1.80053 | [1.62496, 2.41794] | 4.04290 | |
13 | [0.97484, 2.72552] | 3.70036 | [0.31858, 1.48177] | 1.80035 | [1.62192, 2.41708] | 4.03900 | |
14 | [0.97484, 2.72552] | 3.70035 | [0.31858 , 1.48190] | 1.80049 | [1.62197, 2.41729] | 4.03926 | |
15 | [0.97484, 2.72553] | 3.70037 | [0.31858, 1.48190] | 1.80048 | [1.62187, 2.41718] | 4.03905 | |
16 | [0.97484, 2.72552] | 3.70036 | [0.31858, 1.48186] | 1.80044 | [1.62156, 2.41694] | 4.03850 | |
17 | [0.97484, 2.72552] | 3.70036 | [0.31858, 1.48190] | 1.80049 | [1.62199, 2.41729] | 4.03929 | |
18 | [0.97484, 2.72552] | 3.70036 | [0.31858, 1.48176] | 1.80034 | [1.62192, 2.41708] | 4.03901 | |
19 | [0.97484, 2.72553] | 3.70037 | [0.31858, 1.48190] | 1.80048 | [1.62187, 2.41718] | 4.03905 | |
20 | [0.97484, 2.72552] | 3.70036 | [0.31858, 1.48185] | 1.80043 | [1.62148, 2.41693] | 4.03841 | |
21 | [0.97484, 2.72552] | 3.70036 | [0.31858, 1.48178] | 1.80036 | [1.62192, 2.41709] | 4.03900 | |
22 | [0.97484, 2.72552] | 3.70035 | [0.31858, 1.48190] | 1.80049 | [1.62197, 2.41728] | 4.03925 | |
23 | [0.97484, 2.72551] | 3.70035 | [0.31858, 1.48190] | 1.80048 | [1.62187, 2.41718] | 4.03905 | |
24 | [0.97484, 2.72552] | 3.70036 | [0.31858, 1.48187] | 1.80045 | [1.62155, 2.41695] | 4.03851 | |
25 | [0.97484, 2.72552] | 3.70035 | [0.31858, 1.48190] | 1.80049 | [1.62199, 2.41731] | 4.03930 | |
26 | [0.97484, 2.72551] | 3.70035 | [0.31858, 1.48190] | 1.80048 | [1.62187, 2.41719] | 4.03905 | |
27 | [0.97484, 2.72552] | 3.70036 | [0.31858, 1.48183] | 1.80041 | [1.62149, 2.41692] | 4.03840 |
S,No | Estimator | Simulated Population 1 | Simulated Population 2 | Simulated Population 3 | |||
---|---|---|---|---|---|---|---|
NPRE | PRET | NPRE | PRET | NPRE | PRET | ||
1 | [100, 100] | 100 | [100, 100] | 100 | [[100, 100] | 100 | |
2 | [100.08006, 100.00341] | 100.03169 | [101.27647, 101.68472] | 101.61581 | [103.65474, 100.18393] | 101.87908 | |
3 | [100.05401, 99.99643] | 100.01767 | [101.24626, 100.04206] | 100.24263 | [99.80726, 99.88642] | 99.84706 | |
4 | [101.53861, 99.86177] | 100.47412 | [110.82149, 660.62933] | 360.09302 | [176.79476, 97.24620] | 125.25053 | |
5 | [264.79028, 141.97433] | 171.29583 | [733.75067, 675.45388] | 684.60409 | [237.02090, 164.43889] | 193.95234 | |
6 | [264.57410, 145.97668] | 174.91247 | [303.96788, 1121.57420] | 772.17185 | [254.02939, 184.50646] | 213.54820 | |
7 | [264.82564, 141.96279] | 171.29070 | [918.67583, 894.81094] | 898.73853 | [237.54368, 162.89272] | 193.03784 | |
8 | [264.61081, 145.95061] | 174.89478 | [399.05725, 1073.11367] | 835.65698 | [253.13828, 180.51558] | 210.52849 | |
9 | [266.27983, 129.28388] | 159.58410 | [1152.71100, 1183.01279] | 1177.80425 | [291.54888, 149.14770] | 196.94884 | |
10 | [264.53705, 146.00293] | 174.93027 | [215.75914, 1204.95912] | 680.27717 | [255.10118, 189.32614] | 217.14807 | |
11 | [264.81606, 141.97174] | 171.29743 | [771.88175, 742.09796] | 746.94653 | [237.62152, 163.95598] | 193.81281 | |
12 | [264.60086, 145.97083] | 174.91149 | [320.49588, 1105.29996] | 782.82352 | [253.00626, 183.26617] | 212.35268 | |
13 | [266.27289, 129.26747] | 159.56741 | [1171.74313, 1220.04331] | 1211.64125 | [291.44619, 109.26216] | 158.49422 | |
14 | [264.54715, 145.98255] | 174.91344 | [287.65733, 1140.63548] | 761.01421 | [255.29808, 185.81798] | 214.87735 | |
15 | [267.83456, 163.26448] | 190.74912 | [307.10137, 681.70165] | 565.63268 | [201.47809, 134.06674] | 160.80162 | |
16 | [267.02574, 138.60407] | 168.51337 | [954.29857, 965.28587] | 963.41984 | [243.03947, 150.15251] | 185.35415 | |
17 | [266.78799, 138.67380] | 168.54340 | [1035.30500, 926.38958] | 943.07990 | [242.27734, 146.39206] | 182.22986 | |
18 | [266.86859, 138.30148] | 168.20799 | [1121.29879, 933.28186] | 960.37195 | [243.66371, 148.39439] | 184.17785 | |
19 | [266.92775, 137.62988] | 167.58906 | [1146.88947, 1164.69134] | 1161.65802 | [247.75630, 152.78061] | 188.73203 | |
20 | [266.79029, 138.67420] | 168.54411 | [1039.58918, 926.85145] | 944.07446 | [241.98850, 146.24966] | 182.03765 | |
21 | [267.02889, 138.60437] | 168.51411 | [880.95461, 817.45301] | 827.48732 | [242.92740, 150.20418] | 185.36135 | |
22 | [266.86859, 138.30148] | 168.20799 | [1121.29879, 933.28186] | 960.37195 | [243.66371, 148.39439] | 184.17785 | |
23 | [266.93056, 137.62888] | 167.58854 | [1158.36969, 1202.28249] | 1194.66372 | [248.76470, 152.98535] | 189.17965 | |
24 | [267.02516, 138.60356] | 168.51281 | [1069.33186, 1099.88791] | 1094.62597 | [243.03298, 150.09614] | 185.30905 | |
25 | [266.78756, 138.67313] | 168.54271 | [1028.51846, 926.00704] | 941.79818 | [242.26060, 146.54866] | 182.34717 | |
26 | [266.86811, 138.30167] | 168.20809 | [1099.75875, 931.52769] | 956.13262 | [243.66566, 148.44125] | 184.21471 | |
27 | [266.92723, 137.63159] | 167.59059 | [1123.95352, 1126.39894] | 1125.98681 | [247.81449, 152.55840] | 188.57809 | |
28 | [266.79073, 138.67488] | 168.54481 | [1056.22998, 927.91600] | 947.27518 | [242.01318, 146.05455] | 181.89243 | |
29 | [266.87167, 138.30118] | 168.20816 | [1167.59830, 940.26728] | 972.10741 | [243.69453, 148.29270] | 184.10776 | |
30 | [266.93109, 137.62716] | 167.58700 | [1179.44595, 1249.82430] | 1237.40299 | [248.67820, 153.27011] | 189.37364 |
S,No | Estimator | Simulated Population 1 | Simulated Population 2 | Simulated Population 3 | |||
---|---|---|---|---|---|---|---|
NPRE | PRET | NPRE | PRET | NPRE | PRET | ||
1 | [197.51566, 118.96238] | 139.42659 | [385.84991, 423.58601] | 416.72974 | [158.82949, 122.96425] | 138.50576 | |
2 | [198.44674, 118.96238] | 139.59722 | [419.45387, 423.58601] | 422.88519 | [165.11079, 122.96425] | 140.82732 | |
3 | [268.72953, 140.19515] | 170.24690 | [1142.04051, 1220.80954] | 1206.80699 | [240.28878, 156.89029] | 189.58807 | |
4 | [268.71769, 142.26780] | 172.16693 | [836.77946, 1026.86755] | 989.06978 | [248.85292, 168.06400] | 200.39140 | |
5 | [268.73135, 140.18927] | 170.24170 | [1175.56986, 1253.32238] | 1239.53065 | [240.54757, 156.09759] | 189.08408 | |
6 | [268.71978, 142.25405] | 172.15454 | [950.65697, 1000.15444] | 991.47015 | [248.39304, 165.62739] | 198.49271 | |
7 | [268.77059, 133.88815] | 164.32193 | [1090.99271, 1065.24390] | 1069.49017 | [276.87782, 199.06775] | 231.37904 | |
8 | [268.71554, 142.28164] | 172.17940 | [686.02388, 1081.55337] | 985.92659 | [249.40848, 171.31855] | 202.88420 | |
9 | [268.73086, 140.19383] | 170.24587 | [1151.91564, 1236.87663] | 1221.71782 | [240.58611, 156.64219] | 189.49744 | |
10 | [268.71922, 142.26471] | 172.16431 | [859.65449, 1017.67007] | 987.14530 | [248.32505, 167.28739] | 199.66555 | |
11 | [268.77061, 133.88009] | 164.31427 | [1110.49190, 1094.45442] | 1097.11987 | [276.37351, 193.83786] | 227.61553 | |
12 | [268.71613, 142.27089] | 172.16955 | [812.71782, 1038.03854] | 991.78203 | [249.51085 168.90830] | 201.20700 | |
13 | [267.12505, 154.13883] | 182.65017 | [841.22953, 797.45698] | 804.49917 | [222.63277, 141.58266] | 172.85225 | |
14 | [266.64207, 138.49394] | 168.35426 | [1178.11411, 1252.95304] | 1239.70493 | [243.27971, 149.67914] | 185.05994 | |
15 | [266.51331, 138.52885] | 168.36784 | [1020.16583, 925.43032] | 940.11685 | [242.89931, 147.79850] | 183.49900 | |
16 | [266.55648, 138.34260] | 168.20054 | [1068.37183, 928.87577] | 949.73692 | [243.59172, 148.80005] | 184.47138 | |
17 | [266.58847, 138.00737] | 167.89238 | [1086.29732, 1052.97294] | 1058.43521 | [245.64870, 150.99392] | 186.75219 | |
18 | [266.51454, 138.52905] | 168.36821 | [1022.37397, 925.66123] | 940.63007 | [242.75529, 147.72724] | 183.40290 | |
19 | [266.64380, 138.49409] | 168.35465 | [1171.53168, 1248.15801] | 1234.57374 | [243.22374, 149.70497] | 185.06371 | |
20 | [266.55648, 138.34260] | 168.20054 | [1068.37183, 928.87577] | 949.73692 | [243.59172, 148.80005] | 184.47138 | |
21 | [266.58999, 138.00688] | 167.89214 | [1095.93593, 1079.43687] | 1082.17761 | [246.15907, 151.09643] | 186.97757 | |
22 | [266.64175, 138.49369] | 168.35397 | [1176.77507, 1238.37339] | 1227.56367 | [243.27647, 149.65095] | 185.03733 | |
23 | [266.51308, 138.52851] | 168.36749 | [1016.69004, 925.23907] | 939.45486 | [242.89097, 147.87686] | 183.55739 | |
24 | [266.55622, 138.34270] | 168.20059 | [1055.18562, 927.99891] | 947.20560 | [243.59270, 148.82348] | 184.48977 | |
25 | [266.58819, 138.00823] | 167.89314 | [1070.08990, 1029.65023] | 1036.23806 | [245.67811, 150.88268] | 186.67499 | |
26 | [266.51477, 138.52939] | 168.36856 | [1031.07157, 926.19344] | 942.31804 | [242.76759, 147.62960] | 183.33065 | |
27 | [266.55814, 138.34245] | 168.20065 | [1105.30757, 932.36757] | 957.57213 | [243.60714, 148.74920] | 184.43645 | |
28 | [266.59028, 138.00602] | 167.89138 | [1128.78376, 1133.03801] | 1132.32009 | [246.11523, 151.23903] | 187.07480 |
S,No | Estimator | Simulated Population 1 | Simulated Population 2 | Simulated Population 3 | |||
---|---|---|---|---|---|---|---|
NPRE | PRET | NPRE | PRET | NPRE | PRET | ||
1 | [268.78563, 164.36163] | 191.87171 | [1179.50961, 1253.74459] | 1240.60936 | [291.68994, 199.13527] | 236.41111 | |
2 | [268.80339, 164.37118] | 191.88327 | [1179.56139, 1253.91151] | 1240.75495 | [293.34208, 199.40302] | 237.13919 | |
3 | [268.80339, 164.37216] | 191.88411 | [1179.53356, 1253.81988] | 1240.67514 | [293.57587, 199.50865] | 237.29027 | |
4 | [268.80339, 164.37118] | 191.88327 | [1179.56181, 1253.90672] | 1240.75112 | [293.34909, 199.39570] | 237.13626 | |
5 | [268.80339, 164.37216] | 191.88411 | [1179.54617, 1253.81184] | 1240.67094 | [293.56321, 199.48523] | 237.26949 | |
6 | [268.80336, 164.36824] | 191.88074 | [1179.54595, 1253.83165] | 1240.68704 | [294.38396, 199.88450] | 237.82004 | |
7 | [268.80340, 164.37217] | 191.88412 | [1179.51477, 1253.83675] | 1240.68538 | [293.59117, 199.54030] | 237.31776 | |
8 | [268.80339, 164.37118] | 191.88327 | [1179.56177, 1253.91127] | 1240.75482 | [293.35014, 199.40073] | 237.14018 | |
9 | [268.80339, 164.37216] | 191.88411 | [1179.53625, 1253.81709] | 1240.67337 | [293.56134, 199.50116] | 237.28022 | |
10 | [268.80336, 164.36824] | 191.88073 | [1179.54859, 1253.84082] | 1240.69499 | [294.36824, 199.91561] | 237.83710 | |
11 | [268.80339, 164.37216] | 191.88411 | [1179.53067, 1253.82328] | 1240.67737 | [293.59399, 199.51682] | 237.30197 | |
12 | [268.80272, 164.37798] | 191.88898 | [1179.53409, 1253.75793] | 1240.62478 | [292.87305, 199.26725] | 236.89023 | |
13 | [268.80256, 164.37037] | 191.88242 | [1179.56150, 1253.90302] | 1240.74806 | [293.42329, 199.33749] | 237.11892 | |
14 | [268.80252, 164.37040] | 191.88243 | [1179.53679, 1253.78919] | 1240.65075 | [293.41293, 199.32082] | 237.10369 | |
15 | [268.80254, 164.36979] | 191.88191 | [1179.54297, 1253.79112] | 1240.65347 | [293.43178, 199.32967] | 237.11611 | |
16 | [268.80255, 164.37015] | 191.88222 | [1179.54533, 1253.82786] | 1240.68383 | [293.48794, 199.34926] | 237.14827 | |
17 | [268.80252, 164.37037] | 191.88241 | [1179.53707, 1253.78996] | 1240.65143 | [293.40901, 199.32019] | 237.10197 | |
18 | [268.80256, 164.37037] | 191.88242 | [1179.56201, 1253.90964] | 1240.75354 | [293.42176, 199.33772] | 237.11859 | |
19 | [268.80254, 164.36979] | 191.88191 | [1179.54297, 1253.79112] | 1240.65347 | [293.43178, 199.32967] | 237.11611 | |
20 | [268.80255, 164.37015] | 191.88222 | [1179.54661, 1253.83608] | 1240.69077 | [293.50191, 199.35018] | 237.15346 | |
21 | [268.80256, 164.37037] | 191.88242 | [1179.55943, 1253.89278] | 1240.73933 | [293.42320, 199.33724] | 237.11871 | |
22 | [268.80252, 164.37043] | 191.88246 | [1179.53635, 1253.78919] | 1240.65067 | [293.41271, 199.32151] | 237.10411 | |
23 | [268.80254, 164.37072] | 191.88271 | [1179.54126, 1253.79093] | 1240.65299 | [293.43181, 199.32988] | 237.11627 | |
24 | [268.80255, 164.37015] | 191.88222 | [1179.54319, 1253.82072] | 1240.67762 | [293.48874, 199.34826] | 237.14782 | |
25 | [268.80252, 164.37043] | 191.88246 | [1179.53817, 1253.79035] | 1240.65195 | [293.40935, 199.31933] | 237.10147 | |
26 | [268.80254, 164.37072] | 191.88271 | [1179.54788, 1253.79213] | 1240.65521 | [293.43221, 199.32922] | 237.11593 | |
27 | [268.80255, 164.37015] | 191.88222 | [1179.55115, 1253.85326] | 1240.70560 | [293.50071, 199.35146] | 237.15398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Shabbir, J.; Alomair, A.M.; Alomair, M.A. Ratio-Type Estimator for Estimating the Neutrosophic Population Mean in Simple Random Sampling under Intuitionistic Fuzzy Cost Function. Axioms 2023, 12, 890. https://doi.org/10.3390/axioms12090890
Ullah A, Shabbir J, Alomair AM, Alomair MA. Ratio-Type Estimator for Estimating the Neutrosophic Population Mean in Simple Random Sampling under Intuitionistic Fuzzy Cost Function. Axioms. 2023; 12(9):890. https://doi.org/10.3390/axioms12090890
Chicago/Turabian StyleUllah, Atta, Javid Shabbir, Abdullah Mohammed Alomair, and Mohammed Ahmed Alomair. 2023. "Ratio-Type Estimator for Estimating the Neutrosophic Population Mean in Simple Random Sampling under Intuitionistic Fuzzy Cost Function" Axioms 12, no. 9: 890. https://doi.org/10.3390/axioms12090890
APA StyleUllah, A., Shabbir, J., Alomair, A. M., & Alomair, M. A. (2023). Ratio-Type Estimator for Estimating the Neutrosophic Population Mean in Simple Random Sampling under Intuitionistic Fuzzy Cost Function. Axioms, 12(9), 890. https://doi.org/10.3390/axioms12090890