Results of Third-Order Strong Differential Subordinations
Abstract
:1. Introduction and Definitions
2. Main Results
3. Applications with the Operator
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonino, J.A.; Miller, S.S. Third-order differential inequalities and subordinations in the complex plane. Complex Var. Ellip. Equ. 2011, 56, 439–454. [Google Scholar] [CrossRef]
- Antonino, J.A. Strong differentail subordination and applications to univalency conditions. J. Korean Math. Soc. 2006, 43, 311–322. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Oros, G.I.; Oros, G. Strong differentail subordination. Turk. J. Math. 2009, 33, 249–257. [Google Scholar]
- Abd, E.H.; Atshan, W.G. Strong subordination for p-valent functions involving a linear operator. J. Phys. Conf. Ser. 2021, 1818, 012113. [Google Scholar] [CrossRef]
- Aghalary, R.; Arjomandinia, P. On a first order strong differential subordination and application to univalent functions. Commun. Korean Math. Soc. 2022, 37, 445–454. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K. Strong differential sandwich results of λ-pseudo-starlike functions with respect to symmetrical points. Math. Mor. 2019, 23, 45–58. [Google Scholar] [CrossRef]
- Sakar, F.M. Estimate for Initial Tschebyscheff Polynomials Coefficients on a Certain Subclass of Bi-univalent Functions Defined by Salagean Differential Operator. Acta Univ. Apulensis 2018, 54, 45–54. [Google Scholar]
- Juma, A.R.S.; Saloomi, M.H. Coefficient Bounds for Certain Subclass of Analytic Functions Defined By Quasi-Subordination. Iraqi J. Sci. 2018, 59, 1115–1121. [Google Scholar]
- Alb Lupaş, A. Certain strong differential subordinations using Sălăgean and Ruscheweyh operators. Adv. Appl. Math. Anal. 2011, 6, 27–34. [Google Scholar]
- Shehab, N.H.; Juma, A.R.S. Third Order Differential Subordination for Analytic Functions Involving Convolution Operator. Baghdad Sci. J. 2022, 19, 581–592. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Khan, S.; Tchier, F.; Tawfiq, F.M.O.; Shatarah, A.; Cătaş, A. Sharp Estimates Involving a Generalized Symmetric Sălăgean q-Differential Operator for Harmonic Functions via Quantum Calculus. Symmetry 2023, 15, 2156. [Google Scholar] [CrossRef]
- Swamy, S.R. Some strong differential subordinations using a new generalized multiplier transformation. Acta Univ. Apulensis Math. Inform. 2013, 34, 285–291. [Google Scholar]
- Cho, N.E. Strong differential subordination properties for analytic functions involving the Komatu integral operator. Bound. Value Probl. 2013, 2013, 44. [Google Scholar] [CrossRef]
- Jeyaraman, M.P.; Suresh, T.K.; Reddy, E.K. Strong differential subordination and superordination of analytic functions associated with Komatu operator. Int. J. Nonlinear Anal. Appl. 2013, 4, 26–44. [Google Scholar]
- Khan, N.; Khan, K.; Tawfiq, F.M.; Ro, J.S.; Al-shbeil, I. Applications of Fractional Differential Operator to Subclasses of Uniformly q-Starlike Functions. Fractal Fract. 2023, 7, 715. [Google Scholar] [CrossRef]
- Amsheri, S.M.; Zharkova, V. Some strong differential subordinations obtained by fractional derivative operator. Int. J. Math. Anal. 2012, 6, 2159–2172. [Google Scholar]
- Deniz, E.; Çağlar, M.; Orhan, H. The Fekete-Szegö problem for a class of analytic functions defined by Dziok-Srivastava operator. Kodai Math. J. 2012, 35, 439–462. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu-Srivastava operator. Integral Transform. Spec. Funct. 2010, 21, 589–601. [Google Scholar] [CrossRef]
- Jeyaraman, M.P.; Suresh, T.K. Strong differential subordination and superordination of analytic functions. J. Math. Anal. Appl. 2012, 385, 854–864. [Google Scholar] [CrossRef]
- Soren, M.M. Sandwich results for analytic functions involving with iterations of the Owa-Srivastava operator and its combination. Asian-Eur. J. Math. 2014, 7, 1450063. [Google Scholar] [CrossRef]
- Wanas, A.K.; Majeed, A.H. New strong differential subordination and superordination of meromorphic multivalent quasi-convex functions. Kragujev. J. Math. 2020, 44, 27–39. [Google Scholar] [CrossRef]
- Antonino, J.A.; Romaguera, S. Strong differentail subordination to Briot-Bouquet differentail equations. J. Differ. Equ. 1994, 114, 101–105. [Google Scholar] [CrossRef]
- Mishra, A.K.; Gochhayat, P. Invariance of some subclass of multivalent functions under a differintegral operator. Complex Var. Ellip. Equ. 2010, 55, 677–689. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination. Integral Transform. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
- Liu, J.-L. Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator. Integral Transform. Spec. Funct. 2008, 19, 893–901. [Google Scholar] [CrossRef]
- Mishra, A.K.; Soren, M.M. A generalization of the Srivastava—Attiya transform and associated classes. Integral Transform. Spec. Funct. 2011, 23, 831–846. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Li, Q.-G.; Jiang, Y.-P. Certain subclasses of multivalent analytic functions involving the generalized Srivastava-Attiya operator. Integral Transform. Spec. Funct. 2010, 21, 221–234. [Google Scholar] [CrossRef]
- Liu, J.-L. Sufficient conditions for strongly starlike functions involving the generalized Srivastava-Attiya operator. Integral Transform. Spec. Funct. 2011, 22, 79–90. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subordination results for spiral-like functions associated with the Srivastava-Attiya operator. Integral Transform. Spec. Funct. 2011, 23, 97–103. [Google Scholar] [CrossRef]
- Noor, K.I.; Bukhari, S.Z.H. Some subclasses of analytic and spiral-like functions of complex order involving the Srivastava-Attiya integral operator. Integral Transform. Spec. Funct. 2010, 21, 907–916. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Cho, N.E.; Kim, J.A. Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation. Comput. Math. Appl. 2006, 52, 323–330. [Google Scholar] [CrossRef]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Sǎlǎgean, G.S. Subclasses of univalent functions. Lect. Notes Math. 1983, 1013, 362–372. [Google Scholar]
- Uralegaddi, B.A.; Somanatha, C. Certain integral operators for starlike functions. J. Math. Res. Expos. 1995, 15, 14–16. [Google Scholar]
- Wang, Z.-G.; Liu, Z.-H.; Sun, Y. Some properties of the generalized Srivastava-Attiya operator. Integral Transform. Spec. Funct. 2010, 23, 223–236. [Google Scholar] [CrossRef]
- Yuan, S.-M.; Liu, Z.-M. Some properties of two subclasses of k-fold symmetric functions associated with Srivastava-Attiya operator. Appl. Math. Comput. 2011, 218, 1136–1141. [Google Scholar] [CrossRef]
- Cho, N.E.; Kim, I.H.; Srivastava, H.M. Sandwich-type theorems for multivalent functions associated with the Srivastava-Attiya operator. Appl. Math. Comput. 2010, 217, 918–928. [Google Scholar] [CrossRef]
- Goldstein, M.; Hall, R.; Sheil-Small, T.; Smith, H. Convexity preservation of inverse Euler operators and a problem of S. Miller. Bull. Lond. Math. Soc. 1982, 14, 537–541. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Juneja, O.P. Third Order Differential Inequalities in the Complex Plane, Current Topic in Analytic Function Theory; World Scientific: Singapore; London, UK, 1992. [Google Scholar]
- Yıldırım, Z.; Deniz, E.; Kazımoğlu, S. Some Families of Meromorphic Functions Involving a Differential Operator. In Proceedings of the 5th International Conference on Mathematics “An Istanbul Meeting for World Mathematicians”, Istanbul, Turkey, 1–3 December 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soren, M.M.; Wanas, A.K.; Cotîrlǎ, L.-I. Results of Third-Order Strong Differential Subordinations. Axioms 2024, 13, 42. https://doi.org/10.3390/axioms13010042
Soren MM, Wanas AK, Cotîrlǎ L-I. Results of Third-Order Strong Differential Subordinations. Axioms. 2024; 13(1):42. https://doi.org/10.3390/axioms13010042
Chicago/Turabian StyleSoren, Madan Mohan, Abbas Kareem Wanas, and Luminiţa-Ioana Cotîrlǎ. 2024. "Results of Third-Order Strong Differential Subordinations" Axioms 13, no. 1: 42. https://doi.org/10.3390/axioms13010042
APA StyleSoren, M. M., Wanas, A. K., & Cotîrlǎ, L. -I. (2024). Results of Third-Order Strong Differential Subordinations. Axioms, 13(1), 42. https://doi.org/10.3390/axioms13010042