Notes on Modified Planar Kelvin–Stuart Models: Simulations, Applications, Probabilistic Control on the Perturbations
Abstract
:1. Introduction
2. The Models
2.1. The Model A
2.2. Some Simulations
2.3. Some Applications
- In some cases, after a suitable change of the variable in the y component of the differential system (3), the expression can be used to model a characteristic antenna factor in confidential intervals (see, for example, Figure 7).
- In a number of cases, the x component of the solution of the differential system (3) can be used to approximate electrical stages (see Figure 8).
2.4. Model B
2.5. Considerations in Light of Melnikov’s Approach
3. Probabilistic Control of the Perturbations
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bertozzi, A. Heteroclinic orbits and chaotic dynamics in planar fluid. SIAM J. Math. Anal. 1988, 19, 1271–1294. [Google Scholar] [CrossRef]
- Lamb, H. Hydrodynamics, 6th ed.; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Kelly, R. On the stability of an inviscid shear layer which is periodic in space and time. J. Fluid Mech. 1967, 27, 657–689. [Google Scholar] [CrossRef]
- Bertozzi, A. An Extension of the Smale–Birkhoff Homoclinic Theorem, Melnikov’s Method, and Chaotic Dynamics in Incompressible Fluids. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1987. [Google Scholar]
- Tanveer, S.; Speziale, C. Singularities of the Euler Equation and Hydrodynamics Stability; NASA Report 189720, ICASE Report No. 92-54; NASA: Washington, DC, USA, 1992.
- Liao, S.; Lin, Z.; Zhu, H. On the stability and instability of Kelvin–Stuart cat’s eyes flows. arXiv 2023, arXiv:2304.00264. [Google Scholar]
- Rodrigue, S. Mixing and Transport in the Kelvin–Stuart Cat’s Eyes Driven from Using the Topological Approximation Method. Ph.D. Thesis, University of New Orleans, New Orleans, LA, USA, 2006. [Google Scholar]
- Rom-Kedar, V.; Poje, A. Universal properties of chaotic transport in the presence of diffusion. Phys. Fluids 1999, 11, 2044–2057. [Google Scholar] [CrossRef]
- Rom-Kedar, V. Transport rates of a class of two-dimensional maps and flows. Physica D 1990, 43, 229–268. [Google Scholar] [CrossRef]
- Rom-Kedar, V. The Topological Approximation Method, in Transport, Chaos and Plasma Physics (Proc., Marseille); Benkadda, S., Doveil, F., Elskens, Y., Eds.; World Scientific Press: River Edge, NJ, USA, 1993; pp. 39–57. [Google Scholar]
- Rom-Kedar, V. Homoclinic tangles—Classification and applications. Nonlinearity 1994, 7, 441–473. [Google Scholar] [CrossRef]
- Rom-Kedar, V. Secondary homoclinic bifurcation theorems. Chaos 1995, 5, 385–401. [Google Scholar] [CrossRef]
- Rom-Kedar, V.; Wiggins, S. Transport in two—Dimensional maps. Arch. Rat. Mech. Ann. 1990, 109, 239–298. [Google Scholar] [CrossRef]
- Kyurkchiev, N.; Zaevski, T.; Iliev, A.; Kyurkchiev, V.; Rahnev, A. Nonlinear dynamics of a new class of micro-electromechanical oscillators—Open problems. Symmetry 2024, 16, 253. [Google Scholar] [CrossRef]
- Kyurkchiev, N.; Zaevski, T.; Iliev, A.; Kyurkchiev, V.; Rahnev, A. Modeling of Some Classes of Extended Oscillators: Simulations, Algorithms, Generating Chaos, Open Problems. Algorithms 2024, 17, 121. [Google Scholar] [CrossRef]
- Kyurkchiev, N.; Zaevski, T.; Iliev, A.; Kyurkchiev, V.; Rahnev, A. Generating Chaos in Dynamical Systems: Applications, Symmetry Results, and Stimulating Examples. Symmetry 2024, 16, 938. [Google Scholar] [CrossRef]
- Melnikov, V. On the stability of a center for time–periodic perturbation. Trans. Mosc. Math. Soc. 1963, 12, 3–52. [Google Scholar]
- Tsega, Y.; Michaelides, E.; Eschenazi, E. Particle dynamics and mixing in the frequency driven Kelvin cat eyes flow. Chaos 2001, 11, 351–358. [Google Scholar] [CrossRef]
- Proinov, P.; Vasileva, M. Local and Semilocal Convergence of Nourein’s Iterative Method for Finding All Zeros of a Polynomial Simultaneously. Symmetry 2020, 12, 1801. [Google Scholar] [CrossRef]
- Ivanov, S. Families of high-order simultaneous methods with several corrections. Numer. Algor. 2024, 97, 945–958. [Google Scholar] [CrossRef]
- Kyurkchiev, N.; Zaevski, T.; Iliev, A.; Kyurkchiev, V.; Rahnev, A. Dynamics of a new class of extended escape oscillators: Melnikov’s approach, possible application to antenna array theory. Math. Inform. 2024, 67, 1–15. [Google Scholar]
- Soltis, J.J. New Gegenbauer–like and Jacobi–like polynomials with applications. J. Frankl. Inst. 1993, 33, 635–639. [Google Scholar] [CrossRef]
- Moysis, L.; Azar, A.; Kafetzis, I.; Tsiaousis, M.; Charalampidis, N. Introduction to control systems design using matlab. Int. J. Syst. Dyn. Appl. 2015, 6, 130–170. [Google Scholar] [CrossRef]
- Petavratzis, E.; Moysis, L.; Volos, C.; Stouboulos, I.; Nistazakis, H.; Valavanis, K. A chaotic path planning generator enhanced by a memory technique. Robot. Auton. Syst. 2021, 143, 103826. [Google Scholar] [CrossRef]
- Messias, M.; Cândido, M.R. Analytical results on the existence of periodic orbits and canard-type invariant torus in a simple dissipative oscillator. Chaos Solitons Fractals 2024, 182, 114845. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyurkchiev, N.; Zaevski, T.; Iliev, A.; Kyurkchiev, V.; Rahnev, A. Notes on Modified Planar Kelvin–Stuart Models: Simulations, Applications, Probabilistic Control on the Perturbations. Axioms 2024, 13, 720. https://doi.org/10.3390/axioms13100720
Kyurkchiev N, Zaevski T, Iliev A, Kyurkchiev V, Rahnev A. Notes on Modified Planar Kelvin–Stuart Models: Simulations, Applications, Probabilistic Control on the Perturbations. Axioms. 2024; 13(10):720. https://doi.org/10.3390/axioms13100720
Chicago/Turabian StyleKyurkchiev, Nikolay, Tsvetelin Zaevski, Anton Iliev, Vesselin Kyurkchiev, and Asen Rahnev. 2024. "Notes on Modified Planar Kelvin–Stuart Models: Simulations, Applications, Probabilistic Control on the Perturbations" Axioms 13, no. 10: 720. https://doi.org/10.3390/axioms13100720
APA StyleKyurkchiev, N., Zaevski, T., Iliev, A., Kyurkchiev, V., & Rahnev, A. (2024). Notes on Modified Planar Kelvin–Stuart Models: Simulations, Applications, Probabilistic Control on the Perturbations. Axioms, 13(10), 720. https://doi.org/10.3390/axioms13100720