Next Article in Journal
Novel Dynamic Behaviors in Fractional Chaotic Systems: Numerical Simulations with Caputo Derivatives
Previous Article in Journal
Statistical Inference of Uncertain Autoregressive Model via the Principle of Least Squares
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions

1
Department of Mathematics, Jiujiang University, Jiujiang 332005, China
2
Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
3
School of Mathematics and Statistics, Hunan First Normal University, Changsha 410205, China
4
School of Mathematics and Statistics, Linyi University, Linyi 276000, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2024, 13(11), 790; https://doi.org/10.3390/axioms13110790
Submission received: 13 October 2024 / Revised: 11 November 2024 / Accepted: 13 November 2024 / Published: 15 November 2024

Abstract

:
We focus on higher-order matched asymptotic expansions of a one-dimensional classical Poisson–Nernst–Planck system for ionic flow through membrane channels with two oppositely charged ion species under relaxed electroneutrality boundary conditions. Of particular interest are the current–voltage (I–V) relations, which are used to characterize the two most relevant biological properties of ion channels—permeation and selectivity—experimentally. Our result shows that, up to the second order in ε = λ / r , where λ is the Debye length and r is the characteristic radius of the channel, the cubic I–V relation has either three distinct real roots or a unique real root with a multiplicity of three, which sensitively depends on the boundary layers because of the relaxation of the electroneutrality boundary conditions. This indicates more rich dynamics of ionic flows under our more realistic setups and provides a better understanding of the mechanism of ionic flows through membrane channels.
MSC:
34A26; 34B16; 34D15; 37D10; 92C35

1. Introduction

Ion channels are large proteins embedded in membranes that provide a major pathway for cells to communicate with each other and with the outside to transform signals and to conduct group tasks [1,2,3,4]. Ion channel research encompasses two major, interlinked areas: structural characterization and ionic flow analysis. The physical configuration of ion channels is defined by their geometry and the spatial distribution of permanent and polarization charges. Very often, the shape of a typical ion channel has a cylindrical-like domain with a non-uniform cross-sectional area. Within a large class of ion channels, amino acid side chains are distributed mainly over a “short” and “narrow” portion of the channel [5,6,7,8]. The function of channel structures is to select the types of ions and to facilitate the diffusion of ions across cell membranes.
Currently, these permeation and selectivity properties of an ion channel are mainly characterized by the I–V relation that is measured experimentally under different ionic conditions [2,9]. However, all present experimental measurements about ionic flow are of input–output type [2]; that is, the internal dynamics within the channel cannot be measured with the current technology. Mathematical analysis equipped with physically rigorous models becomes essential for a comprehensive exploration of ion channel behavior. Poisson–Nernst–Planck (PNP) systems serve as foundational models for describing ionic motion in these channels. Recently, some nice results in mathematical analysis of the PNP system have been obtained [10,11,12,13,14,15,16,17,18,19,20,21,22].

1.1. Poisson–Nernst– Planck Model for Ionic Flows

Based on the structural characteristics, the basic continuum model for ionic flows is the PNP system that treats the aqueous medium as a dielectric continuum (see [23,24,25,26,27,28,29,30] and the reference therein). Under various conditions, the PNP system can be derived as a reduced model from molecular dynamics [31], from Boltzmann equations [32], and from variational principles [33,34,35]. Considering the key feature of the biological system, the PNP system represents an appropriate model for both analysis and numerical simulations of ionic flows.
In this work, we adopt the one-dimensional steady-state PNP model analyzed in [36] and first proposed by [37], which reads, for k = 1 , 2 , , n ,
ε 2 h ( x ) d d x h ( x ) d ϕ d x = j = 1 n α j c j ( x ) Q ( x ) , d J k d x = 0 , h ( x ) d c k d x + α k c k h ( x ) d ϕ d x = J k ,
where x [ 0 , 1 ] is the coordinate along the axis of the channel (here, the channel is normalized from x = 0 to x = 1 ); h ( x ) is the area of the cross-section over the point x; ε 2 = λ r , where λ is the Debye length and r is the characteristic radius of the channel; ϕ ( x ) is the electric potential; e is the elementary charge; and for each k , α k is the valence, c k is the number density, J k is the flux density (scaled by the diffusion constant), and Q ( x ) is the permanent charge density of the channel.
The boundary conditions are, for i = 1 , 2 , . . . , n ,
ϕ ( 0 ) = V , c k ( 0 ) = L k > 0 ; ϕ ( 1 ) = 0 , c k ( 1 ) = R k > 0 .
For given V , Q ( x ) , L k s, and R k s, if ( ϕ ( x ; ε ) , c k ( x ; ε ) , J k ( ε ) ) is a solution of the boundary value problem in Equations (1) and (2), then the current–voltage (I–V) relation I is defined by
I = s = 1 n α s J s ( ε ) ,
which means the dependence of the current on the voltage V for fixed boundary concentrations L k and R k . Correspondingly, the flow rate of matter T ( V ; ε ) is defined by
T ( V , ε ) = s = 1 n J s ( ε ) .

1.2. Electroneutrality Boundary Conditions vs. Boundary Layers

To describe the behavior of channels or functional transistors accurately, it is essential to consider macroscopic reservoirs connected via ion channels [38,39,40,41]. These reservoirs require macroscopic boundary conditions, which introduce boundary layers characterized by concentration and charge distributions. When these boundary layers extend into the device region that operates under atomic-level control, they can significantly impact device behavior. In particular, charge boundary layers may cause long-distance artifacts, as the electric field generated by these layers can extend far beyond the immediate boundary area [12].
Therefore, careful consideration of boundary layer effects is crucial in the study of such systems, especially for ion channel problems. Nonetheless, in many studies focused on the qualitative properties of ionic flows through membrane channels, electroneutrality boundary conditions are imposed at both ends of the channel (see, e.g., [5,6,7,18,36,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66], given by
k = 1 n z k L k = k = 1 n z k R k = 0 .
Under the condition in Equation (4), the complexity of analyzing the dynamics of ionic flows is significantly reduced. However, this simplification prevents observation of the effects of boundary layers, which emerge from the relaxation of neutrality and contain much richer information about ionic behavior.
To gain a deeper understanding of the mechanisms governing ionic flows through membrane channels, it is crucial to incorporate boundary layer effects into the analysis. Given the sensitivity of electric potentials to these boundary layers, an initial but natural approach is to examine states that are nearly, though not entirely, neutral. This approach, while more challenging, provides a more realistic framework for studying ionic flow dynamics. Building on this concept, the author in [67] examined the cPNP system for one cation and one anion without permanent charges, focusing on the qualitative properties of ionic flows. For this, we introduce parameters σ and ρ with ( σ , ρ ) ( 1 , 1 ) as follows:
z 1 L 1 = σ ( z 2 L 2 ) a n d z 1 R 1 = ρ ( z 2 R 2 ) .
Note that σ = 1 = ρ in Equation (5) implies the neutral state. Richer behavior of ionic flows was observed under this new setup. Later, the authors in [20,68] further studied the PNP system under different setups.
All the works show that the boundary layer plays an important role in the analysis of ionic flow properties. In the current work, we study the cubic-like feature of the I–V relations under the assumption of Equation (5) and analyze the boundary layer impacts on it.

2. Mathematical Methods

The boundary value problem in Equations (1) and (2) is treated as a singularly perturbed problem, from which the outer and inner systems for the asymptotic expansions are derived. More precisely, the outer system deals with the internal dynamics of ionic flows within the channel, that is, the characterization of the system Equation (1) for 0 < x < 1 , while the two inner systems handle the boundary layers occurring at x = 0 and x = 1 , respectively. The matching principle provides the connection between the boundary layers and the internal dynamics. The outer system and the inner system have different time scales, and one needs to piece them together via asymptotic matching principles [69], from which one is able to derive the I–V relations I ( V ; ε ) and the flow rate of matter T ( V ; ε ) of the following forms:
I ( V ; ε ) = I 0 ( V ) + ε I 1 ( V ) + ε 2 I 2 ( V ) + o ( ε 2 ) , T ( V ; ε ) = T 0 ( V ) + ε T 1 ( V ) + ε 2 T 2 ( V ) + o ( ε 2 ) .

2.1. Previous Results and Assumptions

We recall some results from [36], which are the starting point of our analysis. In [36], the authors obtained I 0 ( V ) and I 1 ( V ) for general boundary conditions, and they are given by
T 0 = 2 L 1 L 2 2 R 1 R 2 , I 0 = 2 ( L 1 L 2 R 1 R 2 ) 2 V + ln ( L 1 R 2 ) ln ( L 2 R 1 ) ln ( L 1 L 2 ) ln ( R 1 R 2 ) , T 1 = 4 r ( I 0 + r T 0 ) N ( 1 + r ) ( 1 r ) 4 l ( I 0 + l T 0 ) M ( 1 + l ) ( 1 l ) , I 1 = T 0 1 I 0 T 1 T 0 1 I 0 ( a 1 T 0 a 0 T 1 ) ln ( R 1 R 2 ) ln ( L 1 L 2 ) 1 R 1 R 2 1 L 1 L 2 4 r T 0 ( T 0 + r I 0 ) R 1 R 2 N ( 1 + r ) ( 1 r ) + 4 l T 0 ( T 0 + l I 0 ) L 1 L 2 M ( 1 + l ) ( 1 l ) ,
where a 0 = 2 L 1 L 2 = M , N = 2 R 1 R 2 , a 1 = 4 l ( I 0 + l T 0 ) M ( 1 + l ) ( 1 l ) , l = L 2 1 4 L 1 1 4 L 2 1 4 + L 1 1 4 , r = R 2 1 4 R 1 1 4 R 2 1 4 + R 1 1 4 .
In the current work, we focus on the study of the cubic-like feature of the I–V relations under relaxed boundary concentration conditions. More precisely, we assume, with z 1 = z 2 = 1 ,
L 1 = σ L 2 = σ L , R 1 = ρ R 2 = ρ R ,
where both σ and ρ are some positive parameters with ( σ , ρ ) ( 1 , 1 ) but not equal to 1 simultaniously.
We now consider T 0 , I 0 , T 1 , and I 1 to be functions of ( V ; σ , ρ ) , expand them at ( σ , ρ ) = ( 1 , 1 ) , and neglect higher-order terms. For convenience, we introduce f ( L , R ) = L R ln L ln R . It can be verified directly that f ( L , R ) > 0 if L R and f ( L , R ) R as L R . Careful calculation gives, for k = 0 , 1 ,
T k ( σ , ρ ) = T k ( 1 , 1 ) + T k σ ( 1 , 1 ) ( σ 1 ) + T k ρ ( 1 , 1 ) ( ρ 1 ) , I k ( σ , ρ ) = I k ( 1 , 1 ) + I k σ ( 1 , 1 ) ( σ 1 ) + I k ρ ( 1 , 1 ) ( ρ 1 ) ,
where
T 0 ( 1 , 1 ) = 2 ( L R ) , T 0 σ ( 1 , 1 ) = L , T 0 ρ ( 1 , 1 ) = R , I 0 ( 1 , 1 ) = 2 f ( L , R ) V , I 0 σ ( 1 , 1 ) = f ( L , R ) L f ( L , R ) ln L ln R V , I 0 ρ ( 1 , 1 ) = f ( L , R ) R ln L ln R V f ( L , R ) , T 1 ( 1 , 1 ) = 0 , T 1 σ ( 1 , 1 ) = f ( L , R ) V 2 L , I 1 ( 1 , 1 ) = 0 , I 1 σ ( 1 , 1 ) = T 1 σ ( 1 , 1 ) V ln L ln R f 3 ( L , R ) V 2 4 ( L R ) 3 ( L R ) L 2 L , T 1 ρ ( 1 , 1 ) = f ( L , R ) V 2 R , I 1 ρ ( 1 , 1 ) = T 1 ρ ( 1 , 1 ) V ln L ln R + f 3 ( L , R ) V 2 + 4 ( L R ) 3 ( L R ) R 2 R .

2.2. Approximation of I 2 ( V ; σ , ρ ) as ( σ , ρ ) ( 1 , 1 )

In [36], the authors derived I 2 under electroneutrality conditions. To consider the boundary layer effects, we re-derive I 2 with ( σ , ρ ) ( 1 , 1 ) (see Appendix A for details). We just present the related result for T 2 ( σ , ρ ) and I 2 ( σ , ρ ) . Note that both T 2 and I 2 also depend on the potential V. For convenience, we did not include it in the expressions. To be specific, we have
T 2 ( σ , ρ ) = T 2 ( 1 , 1 ) + T 2 σ ( 1 , 1 ) ( σ 1 ) + T 2 ρ ( 1 , 1 ) ( ρ 1 ) , I 2 ( σ , ρ ) = I 2 ( 1 , 1 ) + I 2 σ ( 1 , 1 ) ( σ 1 ) + I 2 ρ ( 1 , 1 ) ( ρ 1 ) ,
where
T 2 ( 1 , 1 ) = f 2 ( L , R ) ( L 2 R 2 ) V 2 2 L 2 R 2 , T 2 σ ( 1 , 1 ) = f 2 ( L , R ) V 2 2 L L + R R 2 f ( L , R ) ( L + R ) L R 2 + 1 L , T 2 ρ ( 1 , 1 ) = f 2 ( L , R ) V 2 2 R L + R L 2 + f ( L , R ) ( L + R ) R L 2 1 R , I 2 ( 1 , 1 ) = f 2 ( L , R ) L 2 R 2 ( L R ) ( L 3 R 3 ) 3 L R f ( L , R ) f ( L , R ) ( L 2 + L R + R 2 ) 3 L R L + R 2 V 2 V , I 2 σ ( 1 , 1 ) = V f 2 ( L , R ) [ 2 f ( L , R ) ( L 3 R 3 ) V 2 3 L 3 R 3 ( ln L ln R ) 2 ( L 3 R 3 ) V 2 2 R 3 L 2 ( ln L ln R ) 2 f ( L , R ) V 2 2 L 3 ( ln L ln R ) f ( L , R ) ( L + R ) V 2 R 2 L 2 ( ln L ln R ) + V 2 2 L 2 ( ln L ln R ) + ( L + R ) V 2 2 R 2 L ( ln L ln R ) + f ( L , R ) ( L + R ) V 2 4 R 2 L 2 f ( L , R ) ( L 3 R 3 ) 3 R 3 L 3 + 2 ( L 3 R 3 ) 3 R 3 L 2 + L R 2 L 3 ] ,
I 2 ρ ( 1 , 1 ) = V f 2 ( L , R ) [ 2 f ( L , R ) ( L 3 R 3 ) V 2 3 L 3 R 3 ( ln L ln R ) 2 + ( L 3 R 3 ) V 2 2 R 2 L 3 ( ln L ln R ) 2 + f ( L , R ) V 2 2 R 3 ( ln L ln R ) + f ( L , R ) ( L + R ) V 2 R 2 L 2 ( ln L ln R ) V 2 2 R 2 ( ln L ln R ) ( L + R ) V 2 2 R L 2 ( ln L ln R ) f ( L , R ) ( L + R ) V 2 4 R 2 L 2 + f ( L , R ) ( L 3 R 3 ) 3 R 3 L 3 2 ( L 3 R 3 ) 3 R 3 L 2 L R 2 R 3 ] .
For convenience in our following discussion, we rewrite I 2 ( V ; σ , ρ ) as
I 2 ( V ; σ , ρ ) = f 2 ( L , R ) L 2 R 2 [ ( L + R ) f ( L , R ) 2 ( L 3 R 3 ) f ( L , R ) 3 R L ( ln L ln R ) + 2 ( L 3 R 3 ) f ( L , R ) 3 R L ( ln L ln R ) 2 ( σ ρ ) ( L 3 R 3 ) L ( σ 1 ) R ( ρ 1 ) 2 R L ( ln L ln R ) 2 f ( L , R ) R 3 ( σ 1 ) L 3 ( ρ 1 ) 2 R L ( ln L ln R ) + f ( L , R ) ( L + R ) 1 4 1 ln L ln R ( σ ρ ) + ( L 2 + L R + R 2 ) ( σ ρ ) 2 ( ln L ln R ) ] V 3 + f 2 ( L , R ) ( L 3 R 3 ) L 3 R 3 [ L R 3 f ( L , R ) 3 ( σ ρ ) + 2 L ( σ 1 ) R ( ρ 1 ) 3 + R 3 ( σ 1 ) L 3 ( ρ 1 ) 2 ( L 2 + L R + R 2 ) ] V .

3. Results

Under the assumption of Equation (7), for the I–V relations, up to order o ( ϵ 2 ) , we have
I ( V ; σ , ρ ) = I 0 ( V ; σ , ρ ) + ϵ I 1 ( V ; σ , ρ ) + ϵ 2 I 2 ( V ; σ , ρ ) = ϵ 2 f 2 ( L , R ) M 1 V 3 + ϵ M 2 V 2 + ( ϵ 2 M 3 + M 4 ) V + M 5 + ϵ M 6 ,
where
M 1 = f ( L , R ) ( L + R ) 2 R 2 L 2 f ( L , R ) ( L 3 R 3 ) 3 R 3 L 3 ( ln L ln R ) + [ 2 f ( L , R ) ( L 3 R 3 ) 3 R 3 L 3 ( ln L ln R ) 2 f ( L , R ) 2 L 3 ( ln L ln R ) L 3 R 3 2 R 3 L 2 ( ln L ln R ) 2 f ( L , R ) ( L + R ) R 2 L 2 ( ln L ln R ) + 1 2 L 2 ( ln L ln R ) + L + R 2 R 2 L ( ln L ln R ) + f ( L , R ) ( L + R ) 4 R 2 L 2 ] σ + [ 2 f ( L , R ) ( L 3 R 3 ) 3 R 3 L 3 ( ln L ln R ) 2 + L 3 R 3 2 R 2 L 3 ( ln L ln R ) 2 + f ( L , R ) 2 R 3 ( ln L ln R ) + f ( L , R ) ( L + R ) R 2 L 2 ( ln L ln R ) L 2 ( L + R ) R 2 R 2 ( ln L ln R ) f ( L , R ) ( L + R ) 4 R 2 L 2 ] ρ , M 2 = f 2 ( L , R ) ( L R ) ( L 3 R 3 ) 6 R 3 L 3 + f 2 ( L , R ) ( 2 L f ( L , R ) ) ( L 3 R 3 ) 3 R 3 L 3 + L R 2 L 3 σ + f 2 ( L , R ) ( f ( L , R ) 2 R ) ( L 3 R 3 ) 3 R 3 L 3 L R 2 R 3 ρ , M 3 = f ( L , R ) ln L ln R σ 1 2 L ρ 1 2 R f 2 ( L , R ) ln L ln R σ 1 L 2 L ρ 1 R 2 R , M 4 = L ( σ + 1 ) R ( ρ + 1 ) ln L ln R f ( L , R ) ( σ ρ ) ln L ln R , M 5 = 4 ( L R ) 2 σ 1 L 2 L ρ 1 R 2 R , M 6 = f ( L , R ) ( σ ρ ) .
We are ready to state our main result.
Theorem 1. 
Under the assumption of Equation (7) and L R , up to the second-order in ϵ, as ( σ , ρ ) ( 1 , 1 ) , for the I–V relation I = I ( V ) defined in (12), one has the following:
(i)
I ( V ) = 0 has three distinct real roots if one of the following conditions holds:
(i1)
σ = ρ 1 ;
(i2)
σ = 1 and ρ < 1 ;
(i3)
σ > 1 and ρ = 1 ;
(i4)
ρ < σ < 1 ;
(i5)
ρ < 1 < σ ;
(i6)
ρ < σ < 1 .
(ii)
I ( V ) = 0 has a unique real root with multiplicity 3 if one the the following conditions holds:
(ii1)
σ = 1 and ρ > 1 ;
(ii2)
σ < 1 and ρ = 1 ;
(ii3)
σ < ρ < 1 ;
(ii4)
σ < 1 < ρ ;
(ii5)
1 < σ < ρ .
Proof. 
The proofs for different cases listed in the theorem are similar. Here, we will just provide a detailed discussion of case (i1).
Direct calculation gives
I ( V ) = 3 ϵ 2 f 2 ( L , R ) M 1 V 2 + 2 ϵ M 2 V + ϵ 2 M 3 + M 4 ,
and a quadratic function in the potential V with the discriminant Δ given by
Δ = 4 ϵ 2 ( M 2 2 3 f 2 ( L , R ) M 1 M 4 3 ϵ 2 f 2 ( L , R ) M 1 M 3 ) = 4 ϵ 2 M 2 2 3 f 2 ( L , R ) M 1 M 4 + o ( ϵ 2 ) .
With ϵ > 0 small, the sign of Δ is dominated by the term M 2 2 3 f 2 ( L , R ) M 1 M 4 .
For the case with σ = ρ 1 , from Equation (13), one has
M 1 = f ( L , R ) ( L + R ) 2 L 2 R 2 f ( L , R ) ( L 3 R 3 ) 3 L 3 R 3 ( ln L ln R ) , M 2 = f 2 ( L , R ) ( L R ) ( L 3 R 3 ) 6 L 3 R 3 ( σ + 1 ) , M 4 = f ( L , R ) ( σ + 1 ) .
It follows that
M 2 2 3 f 2 ( L , R ) M 1 M 4 = M 2 2 f 4 ( L , R ) ( σ + 1 ) 2 R 3 L 3 ( ln L ln R ) Z ( L , R ) ,
where Z ( L , R ) = 3 L R ( L + R ) ( ln L ln R ) 2 ( L 3 R 3 ) . We now claim that Z ( L , R ) < 0 for L > R . To start, we rewrite Z ( L , R ) as
Z ( L , R ) = R 3 Z 0 ( L , R ) ,
where
Z 0 ( L , R ) = 3 L R L R + 1 ln L R 2 L 3 R 3 1 .
Upon introducing x = L R >1, one has
Z 0 ( x ) = 3 ( x 2 + x ) ln x 2 ( x 3 1 ) .
Note that Z 0 ( 1 ) = Z 0 ( 1 ) = Z 0 ( 1 ) = 0 and
Z 0 ( x ) = 12 x 2 x 1 4 2 + 3 16 < 0 f o r   a l l x > 1 .
Therefore, Z 0 ( x ) < 0 for all x > 1 , and hence, Z ( L , R ) < 0 for L > R . It follows that 3 f 2 M 1 M 4 > 0 . It follows that M 2 2 3 f 2 ( L , R ) M 1 M 4 > 0 . Therefore, I ( V ) = 0 has two distinct real roots, which are given by
V 1 = 2 ϵ M 2 + Δ 6 ϵ 2 f 2 ( L , R ) M 1 a n d V 2 = 2 ϵ M 2 Δ 6 ϵ 2 f 2 ( L , R ) M 1 .
Direct calculation gives
I ( V 1 ) I ( V 2 ) = M 4 2 27 ϵ 2 f 4 ( L , R ) M 1 2 ( 7 f 2 ( L , R ) M 1 M 4 M 2 2 + o ( ϵ ) ) ,
where
7 f 2 ( L , R ) M 1 M 4 M 2 2 = 7 f 4 ( L , R ) ( σ + 1 ) 6 R 3 L 3 ( ln L ln R ) Z ( L , R ) M 2 2 < 0 .
This implies that I ( V ) = 0 has three distinct real roots. We complete the proof. □

4. Discussion

Electrodiffusion—the diffusion and migration of charged particles—plays a critical role in the understanding of nature and in the inventions of modern electronic devices. Ionic flows through ion channels comprise an important particular process of electrodiffusion that shows extremely rich dynamics depending on complicated nonlinear interactions of many physical parameters, such as channel structures, boundary concentrations, electric potential differences, diffusion coefficients, ion sizes, etc. This makes the study of flow properties of interest extremely challenging. Mathematical analysis equipped with physically rigorous models becomes essential for a comprehensive exploration of ion channel behavior.
Currently, the I–V relation is the main tool used experimentally to characterize the two most relevant properties of an ion channel: permeation and selectivity. However, current experimental methods provide only external input–output data and fall short of revealing the detailed internal ionic dynamics within channels. This gap presents a significant challenge to fully understand the properties of ion channels. What we hope for is to rigorously analyze a mesoscopic model of an ion channel in sufficient detail to elucidate its salient features and their impact on conduction and selection. In this work, we employ both an asymptotic matching principle and regular perturbation analysis to a 1D PNP model for ionic flows through membrane channels. Of particular interest is the cubic-like feature of the I–V relations and its sensitive dependence on the boundary concentrations under more realistic setups. To be specific, under relaxed electroneutrality boundary conditions in Equation (7), up to the second order in ϵ , the I–V relations still show the cubic-like feature for some setups as stated in Theorem 1. Meanwhile, the ionic flow properties are sensitive to the boundary layers because of the relaxation of electroneutrality boundary conditions. Under conditions (ii1)–(ii5) stated in Theorem 1, the three distinct real roots of I ( V ; σ , ρ ) = 0 degenerate to a unique real root of multiplicity 3, and the cubic-like feature of the I–V relations vanishes.
The work in this paper is our first step in trying to better understand the mechanism of ionic flows through membrane channels, particularly the sensitive dependence of the I–V relations on the boundary concentration conditions, which show some degenerate phenomena (three distinct real roots degenerate into a unique real root with multiplicity three) as stated in (ii) of the Theorem 1. This leads to richer dynamics of ionic flows through membrane channels. The study in the current work provides efficient ways for one to adjust/control boundary conditions to observe distinct phenomena of ionic flows both numerically and experimentally. The cubic-like feature characterized in this work is consistent with the one adopted in the FitzHuge–Nagumo simplification of the famous Hodgkin–Huxley systems, which describe the propagation of action potential of an ensemble of channels in a biological membrane. This is a reasonable and necessary step before we consider more complicated PNP models in the future, such as the one with nonzero permanent charges and ion-specific finite ion sizes. Finally, we point out that without permanent charges considered in the model, the channel geometry will not affect our discussion of the ionic flow properties (see Remark 2.2 in [43] for more detailed discussion).

Author Contributions

Conceptualization, H.L., Z.L. and M.Z.; methodology, H.L., Z.L., C.P. and J.S.; formal analysis, H.L., Z.L., C.P. and J.S.; writing—original Z.L., C.P. and J.S.; writing—review and editing, M.Z.; funding acquisition, J.S. and M.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Simons Foundation USA (No. 628308) and the start-up fund from Linyi University (No. Z6124034).

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
PNPPoisson–Nernst–Planck
I–VCurrent–voltage

Appendix A

To derive the second-order I–V relations in ϵ under relaxed electroneutrality boundary conditions Equation (7), we first obtain the expansions of the zeroth order and the first order inner and outer solutions, which are further expanded along ( σ , ρ ) = ( 1 , 1 ) . The calculation is tedious but straightforward, and we skip the details and just list the results here, which is necessary for one to derive the second-order I–V relations in ϵ . To be specific, one has the following:
  • Inner solution expansions
    Zeroth order inner solution expansions
    *
    At the boundary x = 0 with ξ = x / ϵ ,
    Φ 0 = V + 1 2 ( 1 e M 0 ξ ) ( σ 1 ) , U 0 = 1 2 M 0 e M 0 ξ ( σ 1 ) , C 10 = L + L 2 ( 1 + e M 0 ξ ) ( σ 1 ) , C 20 = L + L 2 ( 1 e M 0 ξ ) ( σ 1 ) .
    *
    At the boundary x = 1 with ξ = ( x 1 ) / ϵ ,
    Ψ 0 = 1 2 ( 1 e N 0 ξ ) ( ρ 1 ) , V 0 = 1 2 N 0 e N 0 ξ ( ρ 1 ) , D 10 = R + R 2 ( 1 + e N 0 ξ ) ( ρ 1 ) , D 20 = R + R 2 ( 1 e N 0 ξ ) ( ρ 1 ) .
    First order inner solution expansion
    *
    At the boundary x = 0 ,
    Φ 1 = I 0 ( 1 , 1 ) M 0 ξ + T 0 ( 1 , 1 ) 2 M 0 3 2 I 0 σ ( 1 , 1 ) M 0 I 0 ( 1 , 1 ) M σ M 0 2 ξ ( σ 1 ) I 0 ρ ( 1 , 1 ) M 0 ξ ( ρ 1 ) , U 1 = I 0 ( 1 , 1 ) M 0 + I 0 ( 1 , 1 ) M σ M 0 2 I 0 σ ( 1 , 1 ) M 0 ( σ 1 ) I 0 ρ ( 1 , 1 ) M 0 ( ρ 1 ) , C 11 = C 21 = T 0 ( 1 , 1 ) 2 ξ + I 0 ( 1 , 1 ) 4 M 0 T 0 σ ( 1 , 1 ) 2 ξ ( σ 1 ) T 0 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) .
    *
    At the boundary x = 1 ,
    Ψ 1 = I 0 ( 1 , 1 ) N 0 ξ I 0 σ ( 1 , 1 ) N 0 ξ ( σ 1 ) + ( ρ 1 ) ( T 0 ( 1 , 1 ) 2 N 0 3 2 I 0 ρ ( 1 , 1 ) N 0 I 0 ( 1 , 1 ) N σ N 0 2 ξ ) , V 1 = I 0 ( 1 , 1 ) N 0 I 0 σ ( 1 , 1 ) N 0 ( σ 1 ) I 0 ρ ( 1 , 1 ) N 0 I 0 ( 1 , 1 ) N 0 ρ N 0 2 ( ρ 1 ) , D 11 = D 21 = T 0 ( 1 , 1 ) 2 ξ T 0 σ ( 1 , 1 ) 2 ξ ( σ 1 ) + I 0 ( 1 , 1 ) 4 N 0 T 0 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) .
  • Outer solution expansions
    Zeroth order outer solution expansion
    ϕ 0 = b 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | + [ b 0 σ ( 1 , 1 ) + I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | + I 0 ( 1 , 1 ) ( a 0 σ ( 1 , 1 ) T 0 σ ( 1 , 1 ) x ) | a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x | T 0 ( 1 , 1 ) ] ( σ 1 ) + [ b 0 ρ ( 1 , 1 ) + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | + I 0 ( 1 , 1 ) ( a 0 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) x ) | a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x | T 0 ( 1 , 1 ) ] ( ρ 1 ) , c 10 = c 20 = a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x 2 + L T 0 σ ( 1 , 1 ) x 2 ( σ 1 ) T 0 ρ ( 1 , 1 ) x 2 ( ρ 1 ) .
    First order outer solution expansion
    ϕ 1 = b 1 ( 1 , 1 ) + [ b 1 σ ( 1 , 1 ) + T 0 ( 1 , 1 ) I 1 σ ( 1 , 1 ) I 0 ( 1 , 1 ) T 1 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | + I 0 ( 1 , 1 ) ( a 1 σ ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 ( 1 , 1 ) T 1 σ ( 1 , 1 ) ) T 0 ( 1 , 1 ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) ] ( σ 1 ) + [ b 1 ρ ( 1 , 1 ) + I 1 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 1 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) | + I 0 ( 1 , 1 ) ( a 1 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 ( 1 , 1 ) T 1 ρ ( 1 , 1 ) ) | a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x | T 0 ( 1 , 1 ) 2 ] ( ρ 1 ) , c 11 = c 21 = a 1 σ ( 1 , 1 ) T 1 σ ( 1 , 1 ) x 2 ( σ 1 ) + a 1 ρ ( 1 , 1 ) T 1 ρ ( 1 , 1 ) x 2 ( ρ 1 ) .
We now derive the second-order inner solution expansion under relaxed electroneutrality boundary conditions. It follows from [36] that at the boundary x = 0 , one has
Φ ˙ 2 = U 2 , U ˙ 2 = ( C 12 C 22 ) , C ˙ 12 = ( C 10 U 2 + C 11 U 1 + C 12 U 0 ) J 11 , C ˙ 22 = ( C 20 U 2 + C 21 U 1 + C 22 U 0 ) J 21 .
The system (A7) has the following first integrals
G 1 = C 12 e Φ 0 + C 10 e Φ 0 Φ 2 + J 11 F 1 ( ξ ) + F 12 ( ξ ) , G 2 = C 22 e Φ 0 C 20 e Φ 0 Φ 2 + J 21 F 2 ( ξ ) F 22 ( ξ ) , G 3 = U 0 U 2 C 12 C 22 T 1 ξ + 1 2 U 1 2 ,
where
F 1 ( ξ ) = 0 ξ e Φ 0 ( s ) d s , F 2 ( ξ ) = 0 ξ e Φ 0 ( s ) d s , F 12 ( ξ ) = 0 ξ C 11 ( s ) U 1 ( s ) e Φ 0 ( s ) d s , F 22 ( ξ ) = 0 ξ C 21 ( s ) U 1 ( s ) e Φ 0 ( s ) d s .
At the boundary x = 0 , with careful calculation together with the detailed expansions of the zeroth order and the first order systems, one has
Φ 2 = Φ 2 ( 1 , 1 ) + Φ 2 σ ( 1 , 1 ) ( σ 1 ) + Φ 2 ρ ( 1 , 1 ) ( ρ 1 ) , C 12 = C 12 ( 1 , 1 ) + C 12 σ ( 1 , 1 ) ( σ 1 ) + C 12 ρ ( 1 , 1 ) ( ρ 1 ) , C 22 = C 22 ( 1 , 1 ) + C 22 σ ( 1 , 1 ) ( σ 1 ) + C 22 ρ ( 1 , 1 ) ( ρ 1 ) ,
where
Φ 2 ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 3 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 ξ 2 , Φ 2 σ ( 1 , 1 ) = I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 3 + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 L 2 ξ 2 + I 0 2 ( 1 , 1 ) 8 L 2 2 L I 1 σ ( 1 , 1 ) 2 L ξ , Φ 2 ρ ( 1 , 1 ) = I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 3 I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 ξ 2 I 1 ρ ( 1 , 1 ) 2 L ξ , C 12 ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 , C 12 σ ( 1 , 1 ) = I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 L 2 T 1 σ ( 1 , 1 ) 2 ξ I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 , C 12 ρ ( 1 , 1 ) = I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 T 1 ρ ( 1 , 1 ) 2 ξ , C 22 ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 , C 22 σ ( 1 , 1 ) = I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 L 2 T 1 σ ( 1 , 1 ) 2 ξ + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 , C 22 ρ ( 1 , 1 ) = I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 T 1 ρ ( 1 , 1 ) 2 ξ .
Similarly, at the boundary x = 1 , we have
Ψ 2 = Ψ 2 ( 1 , 1 ) + Ψ 2 σ ( 1 , 1 ) ( σ 1 ) + Ψ 2 ρ ( 1 , 1 ) ( ρ 1 ) , D 12 = D 12 ( 1 , 1 ) + D 12 σ ( 1 , 1 ) ( σ 1 ) + D 12 ρ ( 1 , 1 ) ( ρ 1 ) , D 22 = D 22 ( 1 , 1 ) + D 22 σ ( 1 , 1 ) ( σ 1 ) + D 22 ρ ( 1 , 1 ) ( ρ 1 ) ,
where
Ψ 2 ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 3 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 ξ 2 , Ψ 2 σ ( 1 , 1 ) = I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 3 I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 ξ 2 I 1 σ ( 1 , 1 ) 2 R ξ , Ψ 2 ρ ( 1 , 1 ) = I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 ξ 2 + I 0 2 ( 1 , 1 ) 8 R 2 2 R I 1 ρ ( 1 , 1 ) 2 R ξ + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 3 I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 R 3 , D 12 ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 , D 12 σ ( 1 , 1 ) = I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 T 1 σ ( 1 , 1 ) 2 ξ , D 12 ρ ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 R 2 T 1 ρ ( 1 , 1 ) 2 ξ , D 22 ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 , D 22 σ ( 1 , 1 ) = I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 T 1 σ ( 1 , 1 ) 2 ξ , D 22 ρ ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 R 2 T 1 ρ ( 1 , 1 ) 2 ξ .
For the second-order outer solution, one has
ϕ 2 = ϕ 2 ( 1 , 1 ) + ϕ 2 σ ( 1 , 1 ) ( σ 1 ) + ϕ 2 ρ ( 1 , 1 ) ( ρ 1 ) , c 12 = c 12 ( 1 , 1 ) + c 12 σ ( 1 , 1 ) ( σ 1 ) + c 12 ρ ( 1 , 1 ) ( ρ 1 ) , c 22 = c 22 ( 1 , 1 ) + c 22 σ ( 1 , 1 ) ( σ 1 ) + c 22 ρ ( 1 , 1 ) ( ρ 1 ) ,
where
ϕ 2 ( 1 , 1 ) = b 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 3 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 + I 2 ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | + I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) + I 0 3 ( 1 , 1 ) 6 T 0 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 , ϕ 2 σ ( 1 , 1 ) = b 2 σ ( 1 , 1 ) 2 ( I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) ) 3 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 + I 0 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) 2 T 0 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 + 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) ( a 0 σ ( 1 , 1 ) T 0 σ ( 1 , 1 ) x ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 4 I 0 3 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 6 T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 I 0 3 ( 1 , 1 ) ( a 0 σ ( 1 , 1 ) T 0 σ ( 1 , 1 ) x ) 2 T 0 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 4 + I 0 σ ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) + I 0 ( 1 , 1 ) ( a 2 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + a 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) ) + I 0 ( 1 , 1 ) ( a 0 σ ( 1 , 1 ) T 2 ( 1 , 1 ) + a 0 T 2 σ ( 1 , 1 ) ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 T 2 ( 1 , 1 ) ) T 0 σ ( 1 , 1 ) T 0 3 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) + I 2 ( 1 , 1 ) ( a 0 σ ( 1 , 1 ) T 0 σ ( 1 , 1 ) x ) T 0 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 T 2 ( 1 , 1 ) ) ( a 0 σ ( 1 , 1 ) T 0 σ ( 1 , 1 ) x ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 I 0 σ ( 1 , 1 ) T 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 2 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 3 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) ( a 0 σ ( 1 , 1 ) T 0 σ ( 1 , 1 ) x ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) + I 2 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | ,
ϕ 2 ρ ( 1 , 1 ) = b 2 ρ ( 1 , 1 ) 2 ( I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) ) 3 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 + I 0 2 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 2 T 0 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 + 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) ( a 0 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) x ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 4 I 0 3 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 6 T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 I 0 3 ( 1 , 1 ) ( a 0 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) x ) 2 T 0 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 4 + I 0 ρ ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) + I 0 ( 1 , 1 ) ( a 2 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + a 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) a 0 ρ ( 1 , 1 ) T 2 ( 1 , 1 ) a 0 ( 1 , 1 ) T 2 ρ ( 1 , 1 ) ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 ρ ( 1 , 1 ) T 0 3 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) + I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) a 0 ( 1 , 1 ) T 2 ( 1 , 1 ) ) ( a 0 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) x ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 I 0 ρ ( 1 , 1 ) T 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 2 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 3 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) ( a 0 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) x ) T 0 2 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) + I 2 ( 1 , 1 ) ( a 0 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) x ) T 0 ( 1 , 1 ) ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) + I 2 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln | 2 L T 0 ( 1 , 1 ) x | , c 12 ( 1 , 1 ) = I 0 ( 1 , 1 ) ( I 0 ( 1 , 1 ) + 2 T 0 ( 1 , 1 ) ) 4 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 + a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) x 2 , c 12 σ ( 1 , 1 ) = I 0 σ ( 1 , 1 ) ( I 0 ( 1 , 1 ) + T 0 ( 1 , 1 ) ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 ( I 0 2 ( 1 , 1 ) + 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) ) ( a 0 σ ( 1 , 1 ) T 0 σ ( 1 , 1 ) x ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 + a 2 σ ( 1 , 1 ) T 2 σ ( 1 , 1 ) x 2 , c 12 ρ ( 1 , 1 ) = I 0 ρ ( 1 , 1 ) ( I 0 ( 1 , 1 ) + T 0 ( 1 , 1 ) ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 I 0 ( 1 , 1 ) ( I 0 ( 1 , 1 ) + 2 T 0 ( 1 , 1 ) ) ( a 0 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) x ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 + a 2 ρ ( 1 , 1 ) T 2 ρ ( 1 , 1 ) x 2 , c 22 ( 1 , 1 ) = I 0 ( 1 , 1 ) ( I 0 ( 1 , 1 ) 2 T 0 ( 1 , 1 ) ) 4 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 + a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) x 2 , c 22 σ ( 1 , 1 ) = I 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 I 0 ( 1 , 1 ) ( I 0 ( 1 , 1 ) 2 T 0 ( 1 , 1 ) ) ( a 0 σ ( 1 , 1 ) T 0 σ ( 1 , 1 ) x ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 a 2 σ ( 1 , 1 ) T 2 σ ( 1 , 1 ) x 2 , c 22 ρ ( 1 , 1 ) = I 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 2 I 0 ( 1 , 1 ) ( I 0 ( 1 , 1 ) 2 T 00 ) ( a 0 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) x ) 2 ( a 0 ( 1 , 1 ) T 0 ( 1 , 1 ) x ) 3 a 2 ρ ( 1 , 1 ) T 2 ρ ( 1 , 1 ) x 2 .
We are now ready for asymptotic matching of the outer and inner systems. To start, we expand the solutions of the inner and outer systems with respect to ϵ at the boundary x = 0 and x = 1 , respectively.
For the inner expansion about ϵ at x = 0 , from (A1)–(A3) and (A8), one has
E ξ 2 ( Φ ) = V + 1 2 ( σ 1 ) + ϵ [ I 0 ( 1 , 1 ) 2 L ξ + T 0 ( 1 , 1 ) 4 L 2 L I 0 σ ( 1 , 1 ) 2 L ξ + I 0 ( 1 , 1 ) 4 L ξ ( σ 1 ) I 0 ρ ( 1 , 1 ) 2 L ξ ( ρ 1 ) ] + ϵ 2 [ I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 3 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 ξ 2 + ( σ 1 ) ( I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 ξ 2 + I 0 2 ( 1 , 1 ) 8 L 2 2 L I 1 σ ( 1 , 1 ) 2 L ξ + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 L 3 ) ( I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 3 + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 ξ 2 + I 1 ρ ( 1 , 1 ) 2 L ξ ) ( ρ 1 ) ] , E ξ 2 ( C 1 ) = 1 2 L ( σ + 1 ) + ϵ I 0 ( 1 , 1 ) 4 2 L T 0 σ ( 1 , 1 ) 2 ξ T 0 ( 1 , 1 ) 2 ξ ( σ 1 ) T 0 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) + ϵ 2 [ I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 + ( I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 T 1 σ ( 1 , 1 ) 2 ξ ) ( σ 1 ) + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 T 1 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) ] , E ξ 2 ( C 2 ) = 1 2 L ( σ + 1 ) + ϵ I 0 ( 1 , 1 ) 4 2 L T 0 σ ( 1 , 1 ) 2 ξ ( σ 1 ) T 0 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) T 0 ( 1 , 1 ) 2 ξ + ϵ 2 [ I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 ( I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 T 1 σ ( 1 , 1 ) 2 ξ ) ( σ 1 ) I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 + T 1 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) ] .
From (A2)–(A4) and (A9), we have the inner expansion about ϵ = 0 at the boundary x = 1 .
E ξ 2 ( Ψ ) = V + 1 2 ( ρ 1 ) + ϵ [ I 0 ( 1 , 1 ) 2 R ξ I 0 σ ( 1 , 1 ) 2 R ξ ( σ 1 ) + ( T 0 ( 1 , 1 ) 4 R 2 R I 0 ρ ( 1 , 1 ) 2 R ξ + I 0 ( 1 , 1 ) 4 R ξ ) ( ρ 1 ) ] + ϵ 2 [ I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 3 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 ξ 2 + ( I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 3 I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 ξ 2 I 1 σ ( 1 , 1 ) 2 R ξ ) ( σ 1 ) + ( I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 ξ 2 + ( I 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 R 3 + I 0 2 ( 1 , 1 ) 8 R 2 2 R I 1 ρ ( 1 , 1 ) 2 R ξ ) ( ρ 1 ) ] , E ξ 2 ( D 1 ) = 1 2 R ( ρ + 1 ) + ϵ I 0 ( 1 , 1 ) 4 2 R T 0 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) T 0 ( 1 , 1 ) 2 ξ T 0 σ ( 1 , 1 ) 2 ξ ( σ 1 ) + ϵ 2 [ I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 + I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 T 1 σ ( 1 , 1 ) 2 ξ ( σ 1 ) + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 T 1 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) ] , E ξ 2 ( D 2 ) = 1 2 R ( ρ + 1 ) + ϵ I 0 ( 1 , 1 ) 4 2 R T 0 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) T 0 ( 1 , 1 ) 2 ξ T 0 σ ( 1 , 1 ) 2 ξ ( σ 1 ) + ϵ 2 [ I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 + T 1 σ ( 1 , 1 ) 2 ξ ( σ 1 ) T 1 ρ ( 1 , 1 ) 2 ξ + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 ( ρ 1 ) ] .
Similarly, from (A5), (A6), and (A10), the outer expansion at the boundary x = 0 is
E ξ 2 E x 2 ( ϕ ) = A 0 + ϵ A 1 + ϵ 2 A 21 + A 22 ,
where
A 0 = b 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) ln ( 2 L ) + ( b 0 σ ( 1 , 1 ) + I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) + I 0 ( 1 , 1 ) 2 T 0 ( 1 , 1 ) ) ( σ 1 ) + b 0 ρ ( 1 , 1 ) + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) ( ρ 1 ) , A 1 = b 1 ( 1 , 1 ) + ( σ 1 ) ( b 1 σ ( 1 , 1 ) + I 1 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 1 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 1 σ ( 1 , 1 ) 2 T 0 2 ( 1 , 1 ) ) + ( b 1 ρ ( 1 , 1 ) I 0 ( 1 , 1 ) T 1 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) + I 1 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 1 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) ) ( ρ 1 ) I 0 ( 1 , 1 ) 2 L ξ + ( I 0 σ ( 1 , 1 ) 2 L I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) L T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) 4 L ) ξ ( σ 1 ) I 0 ρ ( 1 , 1 ) 2 L ξ ( ρ 1 ) , A 21 = b 2 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 12 L 3 + I 0 3 ( 1 , 1 ) 48 T 0 ( 1 , 1 ) L 3 + I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 L T 2 ( 1 , 1 ) ) 2 L T 0 2 ( 1 , 1 ) + I 2 ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) + ( b 2 σ ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 3 I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 12 L 3 + I 0 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) 16 T 0 ( 1 , 1 ) L 3 I 0 ( 1 , 1 ) 3 T 0 σ ( 1 , 1 ) 48 T 0 2 ( 1 , 1 ) L 3 I 0 3 ( 1 , 1 ) 32 T 0 ( 1 , 1 ) L 3 + I 0 σ ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 L T 2 ( 1 , 1 ) ) 2 L T 0 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) ( a 2 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + a 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) L T 2 ( 1 , 1 ) 2 L T 0 σ ( 1 , 1 ) ) 2 L T 0 2 ( 1 , 1 ) I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 L T 2 ( 1 , 1 ) ) T 0 σ ( 1 , 1 ) L T 0 3 ( 1 , 1 ) I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 L T 2 ( 1 , 1 ) ) 4 L T 0 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 2 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 3 ( 1 , 1 ) ln ( 2 L ) I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) 2 T 0 2 ( 1 , 1 ) + I 2 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) + I 2 ( 1 , 1 ) 2 T 0 ( 1 , 1 ) ) ( σ 1 ) , A 22 = ( b 2 ρ ( 1 , 1 ) I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 12 L 3 + I 0 2 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 16 T 0 ( 1 , 1 ) L 3 I 0 3 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 48 T 0 2 ( 1 , 1 ) L 3 I 0 ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 L T 2 ( 1 , 1 ) ) T 0 ρ ( 1 , 1 ) L T 0 3 ( 1 , 1 ) + I 0 ρ ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 L T 2 ( 1 , 1 ) ) 2 L T 0 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) ( a 2 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + a 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) a 0 ρ ( 1 , 1 ) T 2 ( 1 , 1 ) 2 L T 2 ρ ( 1 , 1 ) ) 2 L T 0 2 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) T 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 2 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 3 ( 1 , 1 ) ln ( 2 L ) + I 2 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) ) ( ρ 1 ) I 0 ( 1 , 1 ) 2 L ξ + ( 2 I 1 σ ( 1 , 1 ) + I 0 ( 1 , 1 ) 4 L I 0 ( 1 , 1 ) T 1 σ ( 1 , 1 ) L T 0 ( 1 , 1 ) ) ξ ( σ 1 ) + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) 3 I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 ξ 2 ( ρ 1 ) I 1 ρ ( 1 , 1 ) 2 L ξ ( ρ 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 L 2 ξ 2 + I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) 3 I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 L 2 ξ 2 ( σ 1 ) .
and
E ξ 2 E x 2 ( c 1 ) = 1 2 L ( σ + 1 ) + ϵ T 0 ( 1 , 1 ) 2 ξ + I 0 ( 1 , 1 ) 4 2 L T 0 σ ( 1 , 1 ) 2 ξ ( σ 1 ) T 0 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) + ϵ 2 [ a 2 ( 1 , 1 ) 2 + I 0 2 ( 1 , 1 ) + 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 16 L 2 + ( a 2 σ ( 1 , 1 ) 2 I 0 2 ( 1 , 1 ) + 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 16 L 2 + I 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) + I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 L 2 T 1 σ ( 1 , 1 ) 2 ξ ) ( σ 1 ) + I 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 + a 2 ρ ( 1 , 1 ) 2 T 1 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) ] , E ξ 2 E x 2 ( c 2 ) = 1 2 L ( σ + 1 ) + ϵ T 0 ( 1 , 1 ) 2 ξ + I 0 ( 1 , 1 ) 4 2 L T 0 σ ( 1 , 1 ) 2 ξ ( σ 1 ) T 0 ρ ( 1 , 1 ) 2 ξ ( ρ 1 ) + ϵ 2 [ a 2 ( 1 , 1 ) 2 + I 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 16 L 2 + ( a 2 σ ( 1 , 1 ) 2 I 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 16 L 2 T 1 σ ( 1 , 1 ) 2 ξ + I 0 σ ( 1 , 1 ) ( I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) ) I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 L 2 ) ( σ 1 ) + ( a 2 ρ ( 1 , 1 ) 2 T 1 ρ ( 1 , 1 ) 2 ξ + I 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 L 2 ) ( ρ 1 ) ] .
At the boundary x = 1 , we have
E ξ 2 E x 2 ( ϕ ) = B 0 + ϵ B 1 + ϵ 2 B 21 + B 22 ,
where
B 0 = b 0 ( 1 , 1 ) + b 0 σ ( 1 , 1 ) + I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) ( σ 1 ) + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) ln ( 2 R ) + b 0 ρ ( 1 , 1 ) + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) + I 0 ( 1 , 1 ) 2 T 0 ( 1 , 1 ) ( ρ 1 ) , B 1 = b 1 ( 1 , 1 ) + b 1 σ ( 1 , 1 ) + I 1 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 1 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) I 0 ( 1 , 1 ) T 1 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ( σ 1 ) + I 0 ( 1 , 1 ) 4 R I 0 ρ ( 1 , 1 ) 2 R ξ ( ρ 1 ) I 0 ( 1 , 1 ) 2 R ξ + ( I 1 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 1 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) I 0 ( 1 , 1 ) ( T 0 ( 1 , 1 ) 2 T 1 ρ ( 1 , 1 ) ) 2 T 0 2 ( 1 , 1 ) + b 1 ρ ( 1 , 1 ) ) ( ρ 1 ) + I 0 σ ( 1 , 1 ) 2 R I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) R T 0 ( 1 , 1 ) ξ ( σ 1 ) , B 21 = b 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) 3 48 T 0 ( 1 , 1 ) R 3 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 12 R 3 + I 0 ( 1 , 1 ) ( ( a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 ( 1 , 1 ) 2 R T 2 ( 1 , 1 ) ) 2 R T 0 2 ( 1 , 1 ) + I 2 ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) + ( b 2 σ ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 12 R 3 + I 0 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) 16 T 0 ( 1 , 1 ) R 3 I 0 ( 1 , 1 ) 3 T 0 σ ( 1 , 1 ) 48 T 0 2 ( 1 , 1 ) R 3 + I 0 σ ( 1 , 1 ) ( ( a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 ( 1 , 1 ) 2 R T 2 ( 1 , 1 ) ) 2 R T 0 2 ( 1 , 1 ) I 0 ( 1 , 1 ) ( ( a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 ( 1 , 1 ) 2 R T 2 ( 1 , 1 ) ) T 0 σ ( 1 , 1 ) R T 0 3 ( 1 , 1 ) + I 0 ( 1 , 1 ) ( ( a 2 σ ( 1 , 1 ) T 2 σ ( 1 , 1 ) ) T 0 ( 1 , 1 ) + ( a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 σ ( 1 , 1 ) 2 R T 0 σ ( 1 , 1 ) ) 2 R T 0 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 2 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 3 ( 1 , 1 ) ln ( 2 R ) + I 2 σ T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) ) ( σ 1 )
B 22 = ( b 2 ρ ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 R 3 I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 12 R 3 + I 0 2 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 16 T 0 ( 1 , 1 ) R 3 I 0 3 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 48 T 0 2 ( 1 , 1 ) R 3 I 0 3 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 32 T 0 ( 1 , 1 ) R 3 + I 0 ( 1 , 1 ) ( a 2 ρ ( 1 , 1 ) T 2 ρ ( 1 , 1 ) ) 2 R T 0 ( 1 , 1 ) T 2 ( 1 , 1 ) 2 T 2 ρ ( 1 , 1 ) 2 T 0 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) ( a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) ) 2 R T 0 2 ( 1 , 1 ) I 0 ( 1 , 1 ) ( ( a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 ρ ( 1 , 1 ) R T 0 2 ( 1 , 1 ) + I 2 ( 1 , 1 ) 2 T 0 ( 1 , 1 ) + I 0 ρ ( 1 , 1 ) ( ( a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 ( 1 , 1 ) 2 R T 2 ( 1 , 1 ) ) 2 R T 0 2 ( 1 , 1 ) + 2 T 2 ( 1 , 1 ) ) T 0 ρ ( 1 , 1 ) T 0 3 ( 1 , 1 ) I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) 2 T 0 2 ( 1 , 1 ) ( I 0 ρ ( 1 , 1 ) T 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 2 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) + I 2 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 3 ( 1 , 1 ) ) ln ( 2 R ) I 0 ( 1 , 1 ) ( ( a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) ) T 0 ( 1 , 1 ) 2 R T 2 ( 1 , 1 ) ) 4 R T 0 2 ( 1 , 1 ) ) ( ρ 1 ) 2 I 0 ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 3 ( 1 , 1 ) I 1 σ ( 1 , 1 ) 2 R ξ ( σ 1 ) + I 0 ( 1 , 1 ) 2 I 1 ρ ( 1 , 1 ) 4 R ξ ( ρ 1 ) + I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) 3 I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 ξ 2 ( σ 1 ) I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 8 R 2 ξ 2 + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) 3 I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 R 2 + I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 4 R 2 ξ 2 ( ρ 1 ) , E ξ 2 E x 2 ( c 1 ) = R 2 ( ρ + 1 ) + ϵ [ T 0 ( 1 , 1 ) 2 ξ + a 1 ρ ( 1 , 1 ) T 1 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) ξ 2 ( ρ 1 ) T 0 σ ( 1 , 1 ) ξ 2 ( σ 1 ) ] + ϵ 2 [ a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) 2 + I 0 2 ( 1 , 1 ) + 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 16 R 2 + ( a 2 σ ( 1 , 1 ) T 2 σ ( 1 , 1 ) 2 + I 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) + I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 T 1 σ ( 1 , 1 ) 2 ξ ) ( σ 1 ) + ( a 2 ρ ( 1 , 1 ) T 2 ρ ( 1 , 1 ) 2 I 0 2 ( 1 , 1 ) + 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 16 R 2 T 1 ρ ( 1 , 1 ) 2 ξ + I 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) + I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 R 2 ) ( ρ 1 ) ] , E ξ 2 E x 2 ( c 2 ) = R 2 ( ρ + 1 ) + ϵ [ T 0 ( 1 , 1 ) 2 ξ + a 1 ρ ( 1 , 1 ) T 1 ρ ( 1 , 1 ) T 0 ρ ( 1 , 1 ) ξ 2 ( ρ 1 ) T 0 σ ( 1 , 1 ) ξ 2 ( σ 1 ) ] + ϵ 2 [ a 2 ( 1 , 1 ) T 2 ( 1 , 1 ) 2 + I 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 16 R 2 + ( a 2 σ ( 1 , 1 ) T 2 σ ( 1 , 1 ) 2 + I 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 8 R 2 T 1 σ ( 1 , 1 ) 2 ξ ) ( σ 1 ) + ( a 2 ρ ( 1 , 1 ) T 2 ρ ( 1 , 1 ) 2 I 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 ( 1 , 1 ) 16 R 2 T 1 ρ ( 1 , 1 ) 2 ξ + I 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 8 R 2 ) ( ρ 1 ) ] .
From (A11) and (A13), we obtain a 2 and b 2 by matching.
a 2 ( V ; σ , ρ ) = a 2 ( V ; 1 , 1 ) + a 2 σ ( V ; 1 , 1 ) ( σ 1 ) + a 2 ρ ( V ; 1 , 1 ) ( ρ 1 ) , b 2 ( V ; σ , ρ ) = b 2 ( V ; 1 , 1 ) + b 2 σ ( V ; 1 , 1 ) ( σ 1 ) + b 2 ρ ( V ; 1 , 1 ) ( ρ 1 ) ,
where
a 2 ( 1 , 1 ) = I 0 2 ( 1 , 1 ) 8 L 2 , a 2 σ ( 1 , 1 ) = I 0 2 ( 1 , 1 ) 8 L 2 I 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) 4 L 2 , a 2 ρ ( 1 , 1 ) = I 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 4 L 2 , b 2 ( 1 , 1 ) = I 0 3 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 2 ( 1 , 1 ) 24 L 3 T 0 ( 1 , 1 ) + T 2 ( 11 ) I 0 ( 1 , 1 ) T 0 2 ( 1 , 1 ) + T 2 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) I 2 ( 1 , 1 ) T 0 ( 1 , 1 ) ln ( 2 L ) , b 2 σ ( 1 , 1 ) = I 0 ( 1 , 1 ) T 0 2 ( 1 , 1 ) + 2 I 0 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) I 0 3 ( 1 , 1 ) 16 L 3 T 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 24 L 3 I 0 3 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 24 L 3 T 0 2 ( 1 , 1 ) + T 2 σ ( 1 , 1 ) I 0 ( 1 , 1 ) + T 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 3 ( 1 , 1 ) × ( 1 + ln ( 2 L ) ) + T 2 ( 1 , 1 ) I 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 T 0 2 ( 1 , 1 ) I 2 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) , b 2 ρ ( 1 , 1 ) = I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 24 L 3 + I 0 2 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 8 L 3 T 0 ( 1 , 1 ) I 0 3 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 24 L 3 T 0 2 ( 1 , 1 ) + T 2 ρ ( 1 , 1 ) I 0 ( 1 , 1 ) + T 2 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 3 ( 1 , 1 ) ( 1 + ln ( 2 L ) ) I 2 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 L ) .
Similarly, from (A12) and (A14), we obtain a 2 and b 2 as follows:
a 2 = a 20 + a 2 σ ( σ 1 ) + a 2 ρ ( ρ 1 ) , b 2 = b 20 + b 2 σ ( σ 1 ) + b 2 ρ ( ρ 1 ) ,
where
a 2 ( 1 , 1 ) = T 2 ( 1 , 1 ) I 0 2 ( 1 , 1 ) 8 R 2 , a 2 σ ( 1 , 1 ) = T 2 σ ( 1 , 1 ) I 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) 4 R 2 , a 2 ρ ( 1 , 1 ) = I 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 4 R 2 + I 0 2 ( 1 , 1 ) 8 R 2 + T 2 ρ ( 1 , 1 ) , b 2 ( 1 , 1 ) = I 0 3 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 2 ( 1 , 1 ) 24 R 3 T 0 ( 1 , 1 ) + T 2 ( 1 , 1 ) I 0 ( 1 , 1 ) T 0 2 ( 1 , 1 ) + T 2 ( 1 , 1 ) I 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) , b 2 σ ( 1 , 1 ) = I 0 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) 8 R 3 T 0 ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 24 R 3 I 0 3 ( 1 , 1 ) T 0 σ ( 1 , 1 ) 24 R 3 T 0 2 ( 1 , 1 ) + T 2 σ ( 1 , 1 ) I 0 ( 1 , 1 ) + T 2 ( 1 , 1 ) I 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 3 ( 1 , 1 ) ( 1 + ln ( 2 R ) ) I 2 σ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 σ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) , b 2 ρ ( 1 , 1 ) = I 0 2 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) 8 R 3 T 0 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 24 R 3 I 0 3 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) 24 R 3 T 0 2 ( 1 , 1 ) + I 0 ( 1 , 1 ) T 0 2 ( 1 , 1 ) I 0 3 ( 1 , 1 ) 16 R 3 T 0 ( 1 , 1 ) + T 2 ( 1 , 1 ) I 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 ( 1 , 1 ) 2 T 0 2 ( 1 , 1 ) + ( 1 + ln ( 2 R ) ) T 2 ρ ( 1 , 1 ) I 0 ( 1 , 1 ) + T 2 ( 1 , 1 ) I 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) 2 I 0 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 2 ( 1 , 1 ) T 0 3 ( 1 , 1 ) I 2 ρ ( 1 , 1 ) T 0 ( 1 , 1 ) I 2 ( 1 , 1 ) T 0 ρ ( 1 , 1 ) T 0 2 ( 1 , 1 ) ln ( 2 R ) .
From Equations (A15) and (A16), we obtain our expression for I 2 ( V ; σ , ρ ) as stated in Equation (11). To end this section, we point out that all the quantities in the derivation, such as, for k = 0 , 1 , a k ( 1 , 1 ) , a k σ ( 1 , 1 ) , a k ρ ( 1 , 1 ) , b k ( 1 , 1 ) , b k σ ( 1 , 1 ) , and b k ρ ( 1 , 1 ) can be easily derived based on the explicit expressions listed below, while I 0 ( 1 , 1 ) , I 0 σ ( 1 , 1 ) , I 0 ρ ( 1 , 1 ) , T 0 ( 1 , 1 ) , T 0 σ ( 1 , 1 ) , and T 0 ρ ( 1 , 1 ) are provided in Equation (9).
a 0 ( σ , ρ ) = 2 σ L , b 0 ( σ , ρ ) = V + 1 2 ln σ 2 V + ln σ ln ρ ln σ ln ρ + 2 ( ln L ln R ) ln ( 2 σ L ) , a 1 ( σ , ρ ) = 4 l ( I 0 ( σ , ρ ) + l T 0 ( σ , ρ ) ) M ( 1 + l ) ( 1 l ) , b 1 ( σ , ρ ) = I 0 ( σ , ρ ) ( a 1 ( σ , ρ ) T 0 ( σ , ρ ) a 0 ( σ , ρ ) T 1 ( σ , ρ ) ) a 0 ( σ , ρ ) T 0 2 ( σ , ρ ) 4 l ( I 0 ( σ , ρ ) + l T 0 ( σ , ρ ) ) M 3 2 ( 1 + l ) ( 1 l ) T 0 ( σ , ρ ) I 1 ( σ , ρ ) I 0 ( σ , ρ ) T 1 ( σ , ρ ) T 0 2 ( σ , ρ ) ln a 0 ( σ , ρ ) .
In particular, M 0 = 2 L and N 0 = 2 R .

References

  1. Boda, D.; Nonner, W.; Valisko, M.; Henderson, D.; Eisenberg, B.; Gillespie, D. Steric selectivity in Na channels arising from protein polarization and mobile side chains. Biophys. J. 2007, 93, 1960–1980. [Google Scholar] [CrossRef] [PubMed]
  2. Eisenberg, B. Crowded charges in ion channels. In Advances in Chemical Physics; Rice, S.A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 77–223. [Google Scholar]
  3. Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2001. [Google Scholar]
  4. Hille, B. Transport Across Cell Membranes: Carrier Mechanisms, Chapter 2. Textbook of Physiology; Patton, H.D., Fuchs, A.F., Hille, B., Scher, A.M., Steiner, R.D., Eds.; Saunders: Philadelphia, PA, USA, 1989; Volume 1, pp. 24–47. [Google Scholar]
  5. Bates, P.W.; Wen, Z.; Zhang, M. Small permanent charge effects on individual fluxes via Poisson-Nernst-Planck models with multiple cations. J. Nonlinear Sci. 2021, 31, 55. [Google Scholar] [CrossRef]
  6. Ji, S.; Liu, W.; Zhang, M. Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson-Nernst-Planck models. SIAM J. Appl. Math. 2015, 75, 114–135. [Google Scholar] [CrossRef]
  7. Wen, Z.; Bates, P.W.; Zhang, M. Effects on I-V relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck equations with multiple cations. Nonlinearity 2021, 34, 4464–4502. [Google Scholar] [CrossRef]
  8. Gillespie, D. A Singular Perturbation Analysis of the Poisson-Nernst-Planck System: Applications to Ionic Channels. Ph.D. Thesis, Rush University at Chicago, Chicago, IL, USA, 1999. [Google Scholar]
  9. Gillespie, D. Energetics of divalent selectivity in a calcium channel: The Ryanodine receptor case study. Biophys. J. 2008, 94, 1169–1184. [Google Scholar] [CrossRef]
  10. Chen, D.P.; Eisenberg, R.S. Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 1993, 64, 1405–1421. [Google Scholar] [CrossRef]
  11. Chen, J.; Zhang, M. Geometric singular perturbation approach to Poisson-Nernst-Planck systems with local hard-sphere potential: Studies on zero-current ionic flows with boundary layers. Qual. Theory Dyn. Sys. 2022, 21, 139. [Google Scholar] [CrossRef]
  12. Eisenberg, B.; Liu, W. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 2007, 38, 1932–1966. [Google Scholar] [CrossRef]
  13. Eisenberg, B.; Liu, W.; Xu, H. Reversal permanent charge and reversal potential: Case studies via classical Poisson-Nernst-Planck models. Nonlinearity 2015, 28, 103–128. [Google Scholar] [CrossRef]
  14. Ji, S.; Eisenberg, B.; Liu, W. Flux Ratios and Channel Structures. J. Dynam. Diff. Equat. 2019, 31, 1141–1183. [Google Scholar] [CrossRef]
  15. Liu, W. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math. 2005, 65, 754–766. [Google Scholar] [CrossRef]
  16. Liu, W. One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. J. Differ. Equ. 2009, 246, 428–451. [Google Scholar] [CrossRef]
  17. Liu, W.; Xu, H. A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow. J. Differ. Equ. 2015, 258, 1192–1228. [Google Scholar] [CrossRef]
  18. Mofidi, H.; Eisenberg, B.; Liu, W. Effects of diffusion coefficients and permanent charge on reversal potentials in ionic channels. Entropy 2022, 22, 325. [Google Scholar] [CrossRef]
  19. Park, J.-K.; Jerome, J.W. Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study. SIAM J. Appl. Math. 1997, 57, 609–630. [Google Scholar] [CrossRef]
  20. Wen, Z.; Zhang, L.; Zhang, M. Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers. J. Dynam. Diff. Equat. 2021, 33, 211–234. [Google Scholar] [CrossRef]
  21. Barcilon, V.; Chen, D.-P.; Eisenberg, R.S. Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 1992, 52, 1405–1425. [Google Scholar] [CrossRef]
  22. Barcilon, V.; Chen, D.-P.; Eisenberg, R.S.; Jerome, J.W. Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 1997, 57, 631–648. [Google Scholar]
  23. Eisenberg, B. Ion Channels as Devices. J. Comput. Electron. 2023, 2, 245–249. [Google Scholar] [CrossRef]
  24. Im, W.; Roux, B. Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 2002, 322, 851–869. [Google Scholar] [CrossRef]
  25. Roux, B.; Allen, T.W.; Berneche, S.; Im, W. Theoretical and computational models of biological ion channels. Quat. Rev. Biophys. 2004, 37, 15–103. [Google Scholar] [CrossRef] [PubMed]
  26. Eisenberg, B. Proteins, channels, and crowded ions. Biophys. Chem. 2003, 100, 507–517. [Google Scholar] [CrossRef] [PubMed]
  27. Eisenberg, R.S. Channels as enzymes. J. Memb. Biol. 1990, 115, 1–12. [Google Scholar] [CrossRef] [PubMed]
  28. Eisenberg, R.S. Atomic Biology, Electrostatics and Ionic Channels. In New Developments and Theoretical Studies of Proteins; Elber, R., Ed.; World Scientific: Philadelphia, PA, USA, 1996; pp. 269–357. [Google Scholar]
  29. Gillespie, D.; Eisenberg, R.S. Physical descriptions of experimental selectivity measurements in ion channels. Eur. Biophys. J. 2002, 31, 454–466. [Google Scholar] [CrossRef] [PubMed]
  30. Gillespie, D.; Nonner, W.; Eisenberg, R.S. Crowded charge in biological ion channels. Nanotechnology 2003, 3, 435–438. [Google Scholar]
  31. Schuss, Z.; Nadler, B.; Eisenberg, R.S. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys. Rev. E 2001, 64, 1–14. [Google Scholar] [CrossRef]
  32. Barcilon, V. Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math. 1992, 52, 1391–1404. [Google Scholar] [CrossRef]
  33. Hyon, Y.; Fonseca, J.; Eisenberg, B.; Liu, C. Energy variational approach to study charge inversion (layering) near charged walls. Discret. Contin. Dyn. Syst. Ser. B 2012, 17, 2725–2743. [Google Scholar] [CrossRef]
  34. Hyon, Y.; Liu, C.; Eisenberg, B. PNP equations with steric effects: A model of ion flow through channels. J. Phys. Chem. B 2012, 116, 11422–11441. [Google Scholar]
  35. Hyon, Y.; Eisenberg, B.; Liu, C. A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 2010, 9, 459–475. [Google Scholar]
  36. Abaid, N.; Eisenberg, R.S.; Liu, W. Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system. SIAM J. Appl. Dyn. Syst. 2008, 2008, 1507–1526. [Google Scholar] [CrossRef]
  37. Nonner, W.; Eisenberg, R.S. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels. Biophys. J. 1998, 75, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
  38. Boda, D.; Busath, D.; Eisenberg, B.; Henderson, D.; Nonner, W. Monte Carlo simulations of ion selectivity in a biological Na+ channel: Charge-space competition. Phys. Chem. Chem. Phys. 2002, 4, 51545160. [Google Scholar] [CrossRef]
  39. Gillespie, D.; Eisenberg, R.S. Modified Donnan potentials for ion transport through biological ion channels. Phys. Rev. E 2001, 63, 061902. [Google Scholar] [CrossRef]
  40. Gillespie, D.; Nonner, W.; Eisenberg, R.S. Density functional theory of charged, hard-sphere fluids. Phys. Rev. E 2003, 68, 0313503. [Google Scholar] [CrossRef]
  41. Gillespie, D.; Nonner, W.; Eisenberg, R.S. Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys. Condens. Matter. 2002, 14, 12129–12145. [Google Scholar] [CrossRef]
  42. Bates, P.W.; Chen, J.; Zhang, M. Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Math. Biosci. Eng. 2020, 17, 3736–3766. [Google Scholar] [CrossRef]
  43. Bates, P.W.; Jia, Y.; Lin, G.; Lu, H.; Zhang, M. Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions. SIAM J. Appl. Dyn. Syst. 2017, 16, 410–430. [Google Scholar] [CrossRef]
  44. Eisenberg, B.; Liu, W. Relative dielectric constants and selectivity ratios in open ionic channels. Mol. Based Math. Biol. 2017, 5, 125–137. [Google Scholar] [CrossRef]
  45. Fu, Y.; Liu, W.; Mofidi, H.; Zhang, M. Finite Ion Size Effects on Ionic Flows via Poisson-Nernst-Planck Systems: Higher Order Contributions. J. Dynam. Diff. Equat. 2023, 35, 1585–1609. [Google Scholar] [CrossRef]
  46. Huang, W.; Liu, W.; Yu, Y. Permanent charge effects on ionic flows: A numerical study of flux ratios and their bifurcation. Commun. Comput. Phy. 2021, 30, 486–514. [Google Scholar] [CrossRef]
  47. Ji, S.; Liu, W. Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part I: Analysis. J. Dyn. Diff. Equat. 2012, 24, 955–983. [Google Scholar] [CrossRef]
  48. Jia, Y.; Liu, W.; Zhang, M. Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman’s local hard-sphere potential: Ion size effects. Discret. Contin. Dyn. Syst. Ser. B 2016, 21, 1775–1802. [Google Scholar] [CrossRef]
  49. Lin, G.; Liu, W.; Yi, Y.; Zhang, M. Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential. SIAM J. Appl. Dyn. Syst. 2013, 12, 1613–1648. [Google Scholar] [CrossRef]
  50. Liu, W. A flux ratio and a universal property of permanent charges effects on fluxes. Comput. Math. Biophys. 2018, 6, 28–40. [Google Scholar] [CrossRef]
  51. Liu, H.; Wang, Z.; Yin, P.; Yu, H. Positivity-preserving third order DG schemes for Poisson-Nernst-Planck equations. J. Comput. Phy. 2022, 452, 110777. [Google Scholar] [CrossRef]
  52. Liu, W.; Sun, N. Flux rations for effects of permanent charges on ionic flows with three ion species: New phenomena from a case study. J. Dyn. Diff. Equat. 2024, 36, 27–62. [Google Scholar]
  53. Liu, W.; Tu, X.; Zhang, M. Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part II: Numerics. J. Dyn. Diff. Equat. 2012, 24, 985–1004. [Google Scholar] [CrossRef]
  54. Liu, W.; Wang, B. Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. J. Dynam. Diff. Equat. 2010, 22, 413–437. [Google Scholar] [CrossRef]
  55. Liu, C.; Wang, C.; Wise, S.; Yue, X.; Zhou, S. A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Math. Comput. 2021, 90, 2071–2106. [Google Scholar] [CrossRef]
  56. Mofidi, H. Reversal permanent charge and concentrations in ionic flows via Poisson-Nernst-Planck models. Quart. Appl. Math. 2021, 79, 581–600. [Google Scholar] [CrossRef]
  57. Mofidi, H. New insights into the effects of small permanent charge on ionic flows: A higher order analysis. Math. Biosci. Eng. 2024, 21, 6042–6076. [Google Scholar] [CrossRef] [PubMed]
  58. Qian, Y.; Wang, C.; Zhou, S. A positive and energy stable numerical scheme for the Poisson–Nernst–Planck–Cahn–Hilliard equations with steric interactions. J. Comput. Phys. 2021, 426, 109908. [Google Scholar] [CrossRef]
  59. Sun, L.; Liu, W. Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: A case study. J. Dynam. Diff. Equat. 2018, 30, 779–797. [Google Scholar] [CrossRef]
  60. Wang, X.-S.; He, D.; Wylie, J.; Huang, H. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems. Phys. Rev. E 2014, 89, 022722. [Google Scholar] [CrossRef]
  61. Yan, L.; Xu, H.; Liu, W. Poisson-Nernst-Planck models for three ion species: Monotonic profiles vs. oscillatory profiles. J. Appl. Anal. Comput. 2022, 12, 1211–1233. [Google Scholar] [CrossRef]
  62. Zhang, L.; Eisenberg, B.; Liu, W. An effect of large permanent charge: Decreasing flux with increasing transmembrane potential. Eur. Phys. J. Spec. Top. 2019, 227, 2575–2601. [Google Scholar] [CrossRef]
  63. Zhang, L.; Liu, W. Effects of large permanent charges on ionic flows via Poisson-Nernst-Planck models. SIAM J. Appl. Dyn. Syst. 2020, 19, 1993–2029. [Google Scholar] [CrossRef]
  64. Zhang, M. Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system. Rocky Mt. J. Math. 2015, 45, 1681–1708. [Google Scholar] [CrossRef]
  65. Singer, A.; Norbury, J. A Poisson-Nernst-Planck model for biological ion channels—An asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 2009, 70, 949–968. [Google Scholar] [CrossRef]
  66. Mofidi, H.; Liu, W. Reversal potential and reversal permanent charge with unequal diffusion coefficients via classical Poisson-Nernst-Planck models. SIAM J. Appl. Math. 2020, 80, 1908–1935. [Google Scholar] [CrossRef]
  67. Zhang, M. Boundary layer effects on ionic flows via classical Poisson-Nernst-Planck systems. Comput. Math. Biophys. 2018, 6, 14–27. [Google Scholar] [CrossRef]
  68. Chen, J.; Wang, Y.; Zhang, L.; Zhang, M. Mathematical analysis of Poisson-Nernst-Planck models with permanent charges and boundary layers: Studies on individual fluxes. Nonlinearity 2021, 34, 3879–3906. [Google Scholar] [CrossRef]
  69. Lagerstrom, P.A. Matched Asymptotic Expansions; Springer: New York, NY, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, H.; Li, Z.; Pan, C.; Song, J.; Zhang, M. Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions. Axioms 2024, 13, 790. https://doi.org/10.3390/axioms13110790

AMA Style

Li H, Li Z, Pan C, Song J, Zhang M. Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions. Axioms. 2024; 13(11):790. https://doi.org/10.3390/axioms13110790

Chicago/Turabian Style

Li, Hong, Zhantao Li, Chaohong Pan, Jie Song, and Mingji Zhang. 2024. "Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions" Axioms 13, no. 11: 790. https://doi.org/10.3390/axioms13110790

APA Style

Li, H., Li, Z., Pan, C., Song, J., & Zhang, M. (2024). Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions. Axioms, 13(11), 790. https://doi.org/10.3390/axioms13110790

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop