Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions
Abstract
:1. Introduction
1.1. Poisson–Nernst– Planck Model for Ionic Flows
1.2. Electroneutrality Boundary Conditions vs. Boundary Layers
2. Mathematical Methods
2.1. Previous Results and Assumptions
2.2. Approximation of as
3. Results
- (i)
- has three distinct real roots if one of the following conditions holds:
- (i1)
- ;
- (i2)
- and ;
- (i3)
- and ;
- (i4)
- ;
- (i5)
- ;
- (i6)
- .
- (ii)
- has a unique real root with multiplicity 3 if one the the following conditions holds:
- (ii1)
- and ;
- (ii2)
- and ;
- (ii3)
- ;
- (ii4)
- ;
- (ii5)
- .
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PNP | Poisson–Nernst–Planck |
I–V | Current–voltage |
Appendix A
- Inner solution expansions
- –
- Zeroth order inner solution expansions
- *
- At the boundary with
- *
- At the boundary with ,
- –
- First order inner solution expansion
- *
- At the boundary
- *
- At the boundary ,
- Outer solution expansions
- –
- Zeroth order outer solution expansion
- –
- First order outer solution expansion
References
- Boda, D.; Nonner, W.; Valisko, M.; Henderson, D.; Eisenberg, B.; Gillespie, D. Steric selectivity in Na channels arising from protein polarization and mobile side chains. Biophys. J. 2007, 93, 1960–1980. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, B. Crowded charges in ion channels. In Advances in Chemical Physics; Rice, S.A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 77–223. [Google Scholar]
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2001. [Google Scholar]
- Hille, B. Transport Across Cell Membranes: Carrier Mechanisms, Chapter 2. Textbook of Physiology; Patton, H.D., Fuchs, A.F., Hille, B., Scher, A.M., Steiner, R.D., Eds.; Saunders: Philadelphia, PA, USA, 1989; Volume 1, pp. 24–47. [Google Scholar]
- Bates, P.W.; Wen, Z.; Zhang, M. Small permanent charge effects on individual fluxes via Poisson-Nernst-Planck models with multiple cations. J. Nonlinear Sci. 2021, 31, 55. [Google Scholar] [CrossRef]
- Ji, S.; Liu, W.; Zhang, M. Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson-Nernst-Planck models. SIAM J. Appl. Math. 2015, 75, 114–135. [Google Scholar] [CrossRef]
- Wen, Z.; Bates, P.W.; Zhang, M. Effects on I-V relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck equations with multiple cations. Nonlinearity 2021, 34, 4464–4502. [Google Scholar] [CrossRef]
- Gillespie, D. A Singular Perturbation Analysis of the Poisson-Nernst-Planck System: Applications to Ionic Channels. Ph.D. Thesis, Rush University at Chicago, Chicago, IL, USA, 1999. [Google Scholar]
- Gillespie, D. Energetics of divalent selectivity in a calcium channel: The Ryanodine receptor case study. Biophys. J. 2008, 94, 1169–1184. [Google Scholar] [CrossRef]
- Chen, D.P.; Eisenberg, R.S. Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 1993, 64, 1405–1421. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M. Geometric singular perturbation approach to Poisson-Nernst-Planck systems with local hard-sphere potential: Studies on zero-current ionic flows with boundary layers. Qual. Theory Dyn. Sys. 2022, 21, 139. [Google Scholar] [CrossRef]
- Eisenberg, B.; Liu, W. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 2007, 38, 1932–1966. [Google Scholar] [CrossRef]
- Eisenberg, B.; Liu, W.; Xu, H. Reversal permanent charge and reversal potential: Case studies via classical Poisson-Nernst-Planck models. Nonlinearity 2015, 28, 103–128. [Google Scholar] [CrossRef]
- Ji, S.; Eisenberg, B.; Liu, W. Flux Ratios and Channel Structures. J. Dynam. Diff. Equat. 2019, 31, 1141–1183. [Google Scholar] [CrossRef]
- Liu, W. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math. 2005, 65, 754–766. [Google Scholar] [CrossRef]
- Liu, W. One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. J. Differ. Equ. 2009, 246, 428–451. [Google Scholar] [CrossRef]
- Liu, W.; Xu, H. A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow. J. Differ. Equ. 2015, 258, 1192–1228. [Google Scholar] [CrossRef]
- Mofidi, H.; Eisenberg, B.; Liu, W. Effects of diffusion coefficients and permanent charge on reversal potentials in ionic channels. Entropy 2022, 22, 325. [Google Scholar] [CrossRef]
- Park, J.-K.; Jerome, J.W. Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study. SIAM J. Appl. Math. 1997, 57, 609–630. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, L.; Zhang, M. Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers. J. Dynam. Diff. Equat. 2021, 33, 211–234. [Google Scholar] [CrossRef]
- Barcilon, V.; Chen, D.-P.; Eisenberg, R.S. Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 1992, 52, 1405–1425. [Google Scholar] [CrossRef]
- Barcilon, V.; Chen, D.-P.; Eisenberg, R.S.; Jerome, J.W. Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 1997, 57, 631–648. [Google Scholar]
- Eisenberg, B. Ion Channels as Devices. J. Comput. Electron. 2023, 2, 245–249. [Google Scholar] [CrossRef]
- Im, W.; Roux, B. Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 2002, 322, 851–869. [Google Scholar] [CrossRef]
- Roux, B.; Allen, T.W.; Berneche, S.; Im, W. Theoretical and computational models of biological ion channels. Quat. Rev. Biophys. 2004, 37, 15–103. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, B. Proteins, channels, and crowded ions. Biophys. Chem. 2003, 100, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, R.S. Channels as enzymes. J. Memb. Biol. 1990, 115, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, R.S. Atomic Biology, Electrostatics and Ionic Channels. In New Developments and Theoretical Studies of Proteins; Elber, R., Ed.; World Scientific: Philadelphia, PA, USA, 1996; pp. 269–357. [Google Scholar]
- Gillespie, D.; Eisenberg, R.S. Physical descriptions of experimental selectivity measurements in ion channels. Eur. Biophys. J. 2002, 31, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, D.; Nonner, W.; Eisenberg, R.S. Crowded charge in biological ion channels. Nanotechnology 2003, 3, 435–438. [Google Scholar]
- Schuss, Z.; Nadler, B.; Eisenberg, R.S. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys. Rev. E 2001, 64, 1–14. [Google Scholar] [CrossRef]
- Barcilon, V. Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math. 1992, 52, 1391–1404. [Google Scholar] [CrossRef]
- Hyon, Y.; Fonseca, J.; Eisenberg, B.; Liu, C. Energy variational approach to study charge inversion (layering) near charged walls. Discret. Contin. Dyn. Syst. Ser. B 2012, 17, 2725–2743. [Google Scholar] [CrossRef]
- Hyon, Y.; Liu, C.; Eisenberg, B. PNP equations with steric effects: A model of ion flow through channels. J. Phys. Chem. B 2012, 116, 11422–11441. [Google Scholar]
- Hyon, Y.; Eisenberg, B.; Liu, C. A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 2010, 9, 459–475. [Google Scholar]
- Abaid, N.; Eisenberg, R.S.; Liu, W. Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system. SIAM J. Appl. Dyn. Syst. 2008, 2008, 1507–1526. [Google Scholar] [CrossRef]
- Nonner, W.; Eisenberg, R.S. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels. Biophys. J. 1998, 75, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
- Boda, D.; Busath, D.; Eisenberg, B.; Henderson, D.; Nonner, W. Monte Carlo simulations of ion selectivity in a biological Na+ channel: Charge-space competition. Phys. Chem. Chem. Phys. 2002, 4, 51545160. [Google Scholar] [CrossRef]
- Gillespie, D.; Eisenberg, R.S. Modified Donnan potentials for ion transport through biological ion channels. Phys. Rev. E 2001, 63, 061902. [Google Scholar] [CrossRef]
- Gillespie, D.; Nonner, W.; Eisenberg, R.S. Density functional theory of charged, hard-sphere fluids. Phys. Rev. E 2003, 68, 0313503. [Google Scholar] [CrossRef]
- Gillespie, D.; Nonner, W.; Eisenberg, R.S. Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys. Condens. Matter. 2002, 14, 12129–12145. [Google Scholar] [CrossRef]
- Bates, P.W.; Chen, J.; Zhang, M. Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Math. Biosci. Eng. 2020, 17, 3736–3766. [Google Scholar] [CrossRef]
- Bates, P.W.; Jia, Y.; Lin, G.; Lu, H.; Zhang, M. Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions. SIAM J. Appl. Dyn. Syst. 2017, 16, 410–430. [Google Scholar] [CrossRef]
- Eisenberg, B.; Liu, W. Relative dielectric constants and selectivity ratios in open ionic channels. Mol. Based Math. Biol. 2017, 5, 125–137. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, W.; Mofidi, H.; Zhang, M. Finite Ion Size Effects on Ionic Flows via Poisson-Nernst-Planck Systems: Higher Order Contributions. J. Dynam. Diff. Equat. 2023, 35, 1585–1609. [Google Scholar] [CrossRef]
- Huang, W.; Liu, W.; Yu, Y. Permanent charge effects on ionic flows: A numerical study of flux ratios and their bifurcation. Commun. Comput. Phy. 2021, 30, 486–514. [Google Scholar] [CrossRef]
- Ji, S.; Liu, W. Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part I: Analysis. J. Dyn. Diff. Equat. 2012, 24, 955–983. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, W.; Zhang, M. Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman’s local hard-sphere potential: Ion size effects. Discret. Contin. Dyn. Syst. Ser. B 2016, 21, 1775–1802. [Google Scholar] [CrossRef]
- Lin, G.; Liu, W.; Yi, Y.; Zhang, M. Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential. SIAM J. Appl. Dyn. Syst. 2013, 12, 1613–1648. [Google Scholar] [CrossRef]
- Liu, W. A flux ratio and a universal property of permanent charges effects on fluxes. Comput. Math. Biophys. 2018, 6, 28–40. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Yin, P.; Yu, H. Positivity-preserving third order DG schemes for Poisson-Nernst-Planck equations. J. Comput. Phy. 2022, 452, 110777. [Google Scholar] [CrossRef]
- Liu, W.; Sun, N. Flux rations for effects of permanent charges on ionic flows with three ion species: New phenomena from a case study. J. Dyn. Diff. Equat. 2024, 36, 27–62. [Google Scholar]
- Liu, W.; Tu, X.; Zhang, M. Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part II: Numerics. J. Dyn. Diff. Equat. 2012, 24, 985–1004. [Google Scholar] [CrossRef]
- Liu, W.; Wang, B. Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. J. Dynam. Diff. Equat. 2010, 22, 413–437. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Wise, S.; Yue, X.; Zhou, S. A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Math. Comput. 2021, 90, 2071–2106. [Google Scholar] [CrossRef]
- Mofidi, H. Reversal permanent charge and concentrations in ionic flows via Poisson-Nernst-Planck models. Quart. Appl. Math. 2021, 79, 581–600. [Google Scholar] [CrossRef]
- Mofidi, H. New insights into the effects of small permanent charge on ionic flows: A higher order analysis. Math. Biosci. Eng. 2024, 21, 6042–6076. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Wang, C.; Zhou, S. A positive and energy stable numerical scheme for the Poisson–Nernst–Planck–Cahn–Hilliard equations with steric interactions. J. Comput. Phys. 2021, 426, 109908. [Google Scholar] [CrossRef]
- Sun, L.; Liu, W. Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: A case study. J. Dynam. Diff. Equat. 2018, 30, 779–797. [Google Scholar] [CrossRef]
- Wang, X.-S.; He, D.; Wylie, J.; Huang, H. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems. Phys. Rev. E 2014, 89, 022722. [Google Scholar] [CrossRef]
- Yan, L.; Xu, H.; Liu, W. Poisson-Nernst-Planck models for three ion species: Monotonic profiles vs. oscillatory profiles. J. Appl. Anal. Comput. 2022, 12, 1211–1233. [Google Scholar] [CrossRef]
- Zhang, L.; Eisenberg, B.; Liu, W. An effect of large permanent charge: Decreasing flux with increasing transmembrane potential. Eur. Phys. J. Spec. Top. 2019, 227, 2575–2601. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W. Effects of large permanent charges on ionic flows via Poisson-Nernst-Planck models. SIAM J. Appl. Dyn. Syst. 2020, 19, 1993–2029. [Google Scholar] [CrossRef]
- Zhang, M. Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system. Rocky Mt. J. Math. 2015, 45, 1681–1708. [Google Scholar] [CrossRef]
- Singer, A.; Norbury, J. A Poisson-Nernst-Planck model for biological ion channels—An asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 2009, 70, 949–968. [Google Scholar] [CrossRef]
- Mofidi, H.; Liu, W. Reversal potential and reversal permanent charge with unequal diffusion coefficients via classical Poisson-Nernst-Planck models. SIAM J. Appl. Math. 2020, 80, 1908–1935. [Google Scholar] [CrossRef]
- Zhang, M. Boundary layer effects on ionic flows via classical Poisson-Nernst-Planck systems. Comput. Math. Biophys. 2018, 6, 14–27. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhang, L.; Zhang, M. Mathematical analysis of Poisson-Nernst-Planck models with permanent charges and boundary layers: Studies on individual fluxes. Nonlinearity 2021, 34, 3879–3906. [Google Scholar] [CrossRef]
- Lagerstrom, P.A. Matched Asymptotic Expansions; Springer: New York, NY, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, Z.; Pan, C.; Song, J.; Zhang, M. Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions. Axioms 2024, 13, 790. https://doi.org/10.3390/axioms13110790
Li H, Li Z, Pan C, Song J, Zhang M. Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions. Axioms. 2024; 13(11):790. https://doi.org/10.3390/axioms13110790
Chicago/Turabian StyleLi, Hong, Zhantao Li, Chaohong Pan, Jie Song, and Mingji Zhang. 2024. "Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions" Axioms 13, no. 11: 790. https://doi.org/10.3390/axioms13110790
APA StyleLi, H., Li, Z., Pan, C., Song, J., & Zhang, M. (2024). Cubic-like Features of I–V Relations via Classical Poisson–Nernst–Planck Systems Under Relaxed Electroneutrality Boundary Conditions. Axioms, 13(11), 790. https://doi.org/10.3390/axioms13110790