Beta Autoregressive Moving Average Model with the Aranda-Ordaz Link Function
Abstract
:1. Introduction
2. Proposed Model
3. Partial Likelihood Inference
4. Diagnostics and Forecasting
5. Numerical Experiments
- with two covariates, where the parameters are set as , , , , , and ;
- with one covariate, where the parameters are , , , , , and .
6. Application
- Let be a vector of initial values associated with the Aranda-Ordaz link function parameter.
- Fit L models, one for each , for .
- Calculate the AIC for each fitted model and choose the one with the lowest value.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Score Vector
Appendix B. Information Matrix
References
- McKenzie, E. Some simple models for discrete variate time series. J. Am. Water Resour. Assoc. 1985, 21, 645–650. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J. Generalized Linear Models, 2nd ed.; Chapman and Hall: Boca Raton, FL, USA, 1989. [Google Scholar]
- Benjamin, M.A.; Rigby, R.A.; Stasinopoulos, D.M. Generalized autoregressive moving average models. J. Am. Stat. Assoc. 2003, 98, 214–223. [Google Scholar] [CrossRef]
- Kedem, B.; Fokianos, K. Regression Models for Time Series Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Janacek, G.; Swift, A. A class of models for non-normal time series. J. Time Ser. Anal. 1990, 11, 19–31. [Google Scholar] [CrossRef]
- Tiku, M.L.; Wong, W.K.; Vaughan, D.C.; Bian, G. Time series models in non-normal situations: Symmetric innovations. J. Time Ser. Anal. 2000, 21, 571–596. [Google Scholar] [CrossRef]
- Jung, R.C.; Kukuk, M.; Liesenfeld, R. Time series of count data: Modeling, estimation and diagnostics. Comput. Stat. Data Anal. 2006, 51, 2350–2364. [Google Scholar] [CrossRef]
- Ribeiro, T.F.; Peña-Ramírez, F.A.; Guerra, R.R.; Alencar, A.P.; Cordeiro, G.M. Forecasting the proportion of stored energy using the unit Burr XII quantile autoregressive moving average model. Comput. Appl. Math. 2024, 43, 27. [Google Scholar] [CrossRef]
- Ferrari, S.L.; Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Rocha, A.V.; Cribari-Neto, F. Beta autoregressive moving average models. TEST 2009, 18, 529, Erratum in TEST 2017, 26, 451–459. [Google Scholar] [CrossRef]
- Bayer, F.M.; Cintra, R.J.; Cribari-Neto, F. Beta seasonal autoregressive moving average models. J. Stat. Comput. Simul. 2018, 88, 2961–2981. [Google Scholar] [CrossRef]
- Pumi, G.; Valk, M.; Bisognin, C.; Bayer, F.M.; Prass, T.S. Beta autoregressive fractionally integrated moving average models. J. Stat. Plan. Inference 2019, 200, 196–212. [Google Scholar] [CrossRef]
- Scher, V.T.; Cribari-Neto, F.; Pumi, G.; Bayer, F.M. Goodness-of-fit tests for βARMA hydrological time series modeling. Environmetrics 2020, 31, e2607. [Google Scholar] [CrossRef]
- Palm, B.G.; Bayer, F.M.; Cintra, R.J. Prediction intervals in the beta autoregressive moving average model. Commun. Stat.-Simul. Comput. 2023, 52, 3635–3656. [Google Scholar] [CrossRef]
- Cribari-Neto, F.; Scher, V.T.; Bayer, F.M. Beta autoregressive moving average model selection with application to modeling and forecasting stored hydroelectric energy. Int. J. Forecast. 2023, 39, 98–109. [Google Scholar] [CrossRef]
- Bayer, F.M.; Pumi, G.; Pereira, T.L.; Souza, T.C. Inflated beta autoregressive moving average models. Comput. Appl. Math. 2023, 42, 183. [Google Scholar] [CrossRef]
- Czado, C. On selecting parametric link transformation families in generalized linear models. J. Stat. Plan. Inference 1997, 61, 125–140. [Google Scholar] [CrossRef]
- Guerrero, V.M.; Johnson, R.A. Use of the Box-Cox transformation with binary response models. Biometrika 1982, 69, 309–314. [Google Scholar] [CrossRef]
- Czado, C. Parametric link modification of both tails in binary regression. Stat. Pap. 1994, 35, 189–201. [Google Scholar] [CrossRef]
- Mallick, B.K.; Gelfand, A.E. Generalized Linear Models with Unknown Link Functions. Biometrika 1994, 81, 237–245. [Google Scholar] [CrossRef]
- Newton, M.A.; Czado, C.; Chappell, R. Bayesian Inference for Semiparametric Binary Regression. J. Am. Stat. Assoc. 1996, 91, 142–153. [Google Scholar] [CrossRef]
- Muggeo, V.M.; Ferrara, G. Fitting generalized linear models with unspecified link function: A P-spline approach. Comput. Stat. Data Anal. 2008, 52, 2529–2537. [Google Scholar] [CrossRef]
- Canterle, D.R.; Bayer, F.M. Variable dispersion beta regressions with parametric link functions. Stat. Pap. 2019, 60, 1541–1567. [Google Scholar] [CrossRef]
- Pumi, G.; Rauber, C.; Bayer, F.M. Kumaraswamy regression model with Aranda-Ordaz link function. TEST 2020, 29, 1051–1071. [Google Scholar] [CrossRef]
- Aranda-Ordaz, F.J. On two families of transformations to additivity for binary response data. Biometrika 1981, 68, 357–363. [Google Scholar] [CrossRef]
- Koenker, R.; Yoon, J. Parametric links for binary choice models: A Fisherian–Bayesian colloquy. J. Econom. 2009, 152, 120–130. [Google Scholar] [CrossRef]
- Ramalho, E.A.; Ramalho, J.J.; Murteira, J.M. Alternative estimating and testing empirical strategies for fractional regression models. J. Econ. Surv. 2011, 25, 19–68. [Google Scholar] [CrossRef]
- Flach, N. Generalized Linear Models with Parametric Link Families in R. Ph.D. Thesis, Department of Mathematics, Technische Universität München, München, Germany, 2014. [Google Scholar]
- Dehbi, H.M.; Cortina-Borja, M.; Geraci, M. Aranda-Ordaz quantile regression for student performance assessment. J. Appl. Stat. 2016, 43, 58–71. [Google Scholar] [CrossRef]
- Bayer, F.M.; Bayer, D.M.; Pumi, G. Kumaraswamy autoregressive moving average models for double bounded environmental data. J. Hydrol. 2017, 555, 385–396. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer: New York, NY, USA, 1999. [Google Scholar]
- Fahrmeir, L.; Kaufmann, H. Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann. Stat. 1985, 13, 342–368. [Google Scholar] [CrossRef]
- Czado, C.; Munk, A. Noncanonical links in generalized linear models—When is the effort justified? J. Stat. Plan. Inference 2000, 87, 317–345. [Google Scholar] [CrossRef]
- Fokianos, K.; Kedem, B. Partial likelihood inference for time series following generalized linear models. J. Time Ser. Anal. 2004, 25, 173–197. [Google Scholar] [CrossRef]
- Fokianos, K.; Kedem, B. Prediction and Classification of non-stationary categorical time series. J. Multivar. Anal. 1998, 67, 277–296. [Google Scholar] [CrossRef]
- Pawitan, Y. In All Likelihood: Statistical Modelling and Inference Using Likelihood; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 1943, 54, 426–482. [Google Scholar] [CrossRef]
- Neyman, J.; Pearson, E.S. On the use and interpretation of certain test criteria for purposes of statistical inference: Part I. Biometrika 1928, 20, 175–240. [Google Scholar]
- Rao, C.R. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Math. Proc. Camb. Philos. Soc. 1948, 44, 50–57. [Google Scholar]
- Terrell, G.R. The gradient statistic. Comput. Sci. Stat. 2002, 34, 206–215. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Dunn, P.K.; Smyth, G.K. Randomized quantile residuals. J. Comput. Graph. Stat. 1996, 5, 236–244. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Ospina, R.; Cribari-Neto, F.; Vasconcellos, K.L.P. Improved point and intervalar estimation for a beta regression model. Comput. Stat. Data Anal. 2006, 51, 960–981. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
0.5 | 0.3 | −1 | −0.5 | 0.3 | 0.4 | −0.1 | 1.5 | 120 | |
Mean | 0.693 | 0.253 | −1.050 | −0.488 | 0.281 | 0.308 | −0.036 | 1.820 | 132.753 |
RB (%) | 38.631 | −15.801 | 4.965 | −2.328 | −6.299 | −22.944 | −64.227 | 21.361 | 10.627 |
SE | 2.660 | 0.319 | 0.424 | 0.603 | 0.689 | 0.616 | 0.529 | 3.887 | 20.858 |
MSE | 7.115 | 0.104 | 0.182 | 0.364 | 0.474 | 0.387 | 0.284 | 15.212 | 597.688 |
Mean | 0.549 | 0.282 | −1.022 | −0.549 | 0.290 | 0.416 | −0.064 | 1.545 | 124.046 |
RB (%) | 9.772 | −6.107 | 2.197 | 9.707 | −3.466 | 3.876 | −35.550 | 3.021 | 3.371 |
SE | 0.394 | 0.038 | 0.164 | 0.407 | 0.391 | 0.427 | 0.328 | 0.500 | 10.420 |
MSE | 0.158 | 0.002 | 0.027 | 0.168 | 0.153 | 0.183 | 0.109 | 0.253 | 124.945 |
Mean | 0.532 | 0.282 | −1.016 | −0.524 | 0.324 | 0.397 | −0.093 | 1.532 | 122.285 |
RB (%) | 6.429 | −5.978 | 1.648 | 4.734 | 7.847 | −0.840 | −6.583 | 2.104 | 1.904 |
SE | 0.321 | 0.027 | 0.124 | 0.327 | 0.315 | 0.342 | 0.265 | 0.379 | 7.810 |
MSE | 0.104 | 0.001 | 0.016 | 0.108 | 0.100 | 0.117 | 0.070 | 0.144 | 66.225 |
Mean | 0.539 | 0.283 | −1.016 | −0.523 | 0.330 | 0.400 | −0.095 | 1.531 | 121.149 |
RB (%) | 7.747 | −5.601 | 1.619 | 4.640 | 9.954 | 0.099 | −4.635 | 2.044 | 0.957 |
SE | 0.226 | 0.019 | 0.086 | 0.225 | 0.217 | 0.233 | 0.181 | 0.260 | 5.395 |
MSE | 0.053 | 0.001 | 0.008 | 0.051 | 0.048 | 0.054 | 0.033 | 0.069 | 30.430 |
0.5 | 0.3 | −1 | −0.5 | 0.3 | 0.4 | −0.1 | 1.5 | 20 | |
Mean | 2.197 | 0.161 | −1.295 | −0.657 | 0.450 | 0.363 | −0.004 | 3.855 | 22.678 |
RB (%) | 339.318 | −46.389 | 29.453 | 31.354 | 49.996 | −9.144 | −96.077 | 156.990 | 13.389 |
SE | 7.309 | 0.960 | 1.079 | 0.952 | 1.372 | 0.634 | 0.538 | 10.157 | 3.650 |
MSE | 56.303 | 0.942 | 1.251 | 0.932 | 1.904 | 0.404 | 0.298 | 108.704 | 20.491 |
Mean | 0.910 | −0.595 | 0.302 | 0.448 | −0.044 | 20.698 | 1.964 | 0.253 | −1.098 |
RB (%) | 81.931 | 19.038 | 0.792 | 12.098 | −56.266 | 3.491 | 30.966 | −15.671 | 9.753 |
SE | 3.505 | 0.447 | 0.604 | 0.429 | 0.325 | 1.702 | 4.698 | 0.450 | 0.529 |
MSE | 12.454 | 0.208 | 0.365 | 0.186 | 0.109 | 3.384 | 22.290 | 0.205 | 0.289 |
Mean | 0.624 | 0.282 | −1.040 | −0.566 | 0.292 | 0.439 | −0.063 | 1.576 | 20.400 |
RB (%) | 24.788 | −6.031 | 4.038 | 13.232 | −2.588 | 9.711 | −37.279 | 5.073 | 2.002 |
SE | 0.812 | 0.093 | 0.282 | 0.331 | 0.320 | 0.337 | 0.257 | 0.955 | 1.297 |
MSE | 0.675 | 0.009 | 0.081 | 0.114 | 0.102 | 0.115 | 0.067 | 0.918 | 1.841 |
Mean | 0.557 | 0.282 | −1.015 | −0.546 | 0.308 | 0.423 | −0.078 | 1.511 | 20.191 |
RB (%) | 11.455 | −5.869 | 1.485 | 9.203 | 2.685 | 5.827 | −22.212 | 0.730 | 0.953 |
SE | 0.397 | 0.038 | 0.169 | 0.226 | 0.216 | 0.231 | 0.176 | 0.503 | 0.881 |
MSE | 0.161 | 0.002 | 0.029 | 0.053 | 0.047 | 0.054 | 0.031 | 0.253 | 0.813 |
−0.5 | −1.0 | −0.4 | 0.2 | 0.3 | 0.5 | 120 | |
Mean | −0.433 | −1.048 | −0.314 | 0.160 | 0.207 | 0.629 | 130.483 |
RB (%) | −13.354 | 4.850 | −21.569 | −20.199 | −30.895 | 25.739 | 8.735 |
SE | 0.248 | 0.119 | 0.389 | 0.119 | 0.413 | 0.394 | 19.982 |
MSE | 0.066 | 0.016 | 0.159 | 0.016 | 0.179 | 0.171 | 509.160 |
Mean | −0.518 | −1.015 | −0.408 | 0.149 | 0.307 | 0.534 | 122.941 |
RB (%) | 3.636 | 1.511 | 1.946 | −25.272 | 2.486 | 6.765 | 2.451 |
SE | 0.159 | 0.073 | 0.206 | 0.067 | 0.212 | 0.246 | 10.199 |
MSE | 0.025 | 0.006 | 0.042 | 0.007 | 0.045 | 0.062 | 112.665 |
Mean | −0.531 | −0.427 | 0.149 | 0.329 | 121.462 | 0.525 | −1.011 |
RB (%) | 6.222 | 6.823 | −25.370 | 9.795 | 1.219 | 5.020 | 1.068 |
SE | 0.127 | 0.144 | 0.050 | 0.149 | 7.765 | 0.197 | 0.059 |
MSE | 0.017 | 0.022 | 0.005 | 0.023 | 62.427 | 0.040 | 0.004 |
Mean | −0.541 | −1.008 | −0.442 | 0.147 | 0.345 | 0.518 | 120.628 |
RB (%) | 8.180 | 0.753 | 10.413 | −26.418 | 14.834 | 3.574 | 0.523 |
SE | 0.088 | 0.041 | 0.094 | 0.035 | 0.098 | 0.139 | 5.375 |
MSE | 0.009 | 0.002 | 0.011 | 0.004 | 0.012 | 0.020 | 29.288 |
−0.5 | −1.0 | −0.4 | 0.2 | 0.3 | 0.5 | 20 | |
Mean | −0.091 | −1.240 | −0.345 | 0.197 | 0.211 | 1.332 | 21.745 |
RB (%) | −81.898 | 24.005 | −13.710 | −1.590 | −29.671 | 166.329 | 8.727 |
SE | 2.411 | 1.075 | 0.444 | 0.180 | 0.390 | 5.924 | 3.253 |
MSE | 5.979 | 1.213 | 0.200 | 0.032 | 0.160 | 35.784 | 13.629 |
Mean | −0.406 | −1.080 | −0.381 | 0.179 | 0.282 | 0.733 | 20.565 |
RB (%) | −18.707 | 7.985 | −4.638 | −10.545 | −5.972 | 46.634 | 2.824 |
SE | 0.248 | 0.150 | 0.204 | 0.074 | 0.209 | 0.464 | 1.710 |
MSE | 0.070 | 0.029 | 0.042 | 0.006 | 0.044 | 0.270 | 3.244 |
Mean | −0.448 | −1.051 | −0.387 | 0.175 | 0.292 | 0.653 | 20.289 |
RB (%) | −10.381 | 5.118 | −3.291 | −12.493 | −2.803 | 30.606 | 1.445 |
SE | 0.196 | 0.118 | 0.147 | 0.055 | 0.152 | 0.371 | 1.264 |
MSE | 0.041 | 0.017 | 0.022 | 0.004 | 0.023 | 0.161 | 1.681 |
Mean | −0.483 | −1.030 | −0.398 | 0.171 | 0.306 | 0.592 | 20.136 |
RB (%) | −3.365 | 3.032 | −0.486 | −14.723 | 1.915 | 18.495 | 0.678 |
SE | 0.143 | 0.086 | 0.099 | 0.039 | 0.102 | 0.272 | 0.878 |
MSE | 0.021 | 0.008 | 0.010 | 0.002 | 0.010 | 0.083 | 0.789 |
Estimate | Std. Error | Z Statistic | p-Value | |
---|---|---|---|---|
0.616 | 0.249 | 2.478 | 0.013 | |
0.445 | 0.109 | 4.090 | <0.001 | |
0.840 | 0.062 | 13.634 | <0.001 | |
−0.424 | 0.163 | 2.600 | 0.009 | |
1.920 | 0.264 | 7.284 * | <0.001 | |
12.482 | 1.073 | - | - | |
Log-likelihood ; | ||||
; | ||||
Ljung–Box test: p-value |
Link | In-Sample | Out-of-Sample | ||||
---|---|---|---|---|---|---|
RMSE | MAE | MAPE | RMSE | MAE | MAPE | |
Aranda-Ordaz | 0.116 | 0.092 | 17.026% | 0.153 | 0.124 | 36.474% |
logit | 0.155 | 0.130 | 24.395% | 0.166 | 0.132 | 40.233% |
probit | 0.145 | 0.121 | 22.466% | 0.167 | 0.134 | 40.676% |
cloglog | 0.145 | 0.122 | 22.899% | 0.207 | 0.171 | 51.138% |
Aranda-Ordaz | 0.116 | 0.093 | 16.871% | 0.103 | 0.073 | 13.384% |
logit | 0.155 | 0.130 | 24.082% | 0.113 | 0.088 | 15.619% |
probit | 0.144 | 0.121 | 22.246% | 0.107 | 0.081 | 14.539% |
cloglog | 0.146 | 0.125 | 23.755% | 0.109 | 0.083 | 15.225% |
Aranda-Ordaz | 0.115 | 0.092 | 15.976% | 0.183 | 0.157 | 59.158% |
logit | 0.152 | 0.129 | 22.349% | 0.198 | 0.174 | 69.918% |
probit | 0.142 | 0.121 | 20.768% | 0.186 | 0.160 | 64.178% |
cloglog | 0.142 | 0.121 | 21.130% | 0.185 | 0.158 | 63.833% |
Aranda-Ordaz | 0.114 | 0.092 | 15.372% | 0.265 | 0.233 | 53.918% |
logit | 0.150 | 0.128 | 21.526% | 0.263 | 0.239 | 52.931% |
probit | 0.140 | 0.119 | 19.820% | 0.267 | 0.240 | 53.906% |
cloglog | 0.140 | 0.120 | 20.008% | 0.268 | 0.241 | 54.016% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manchini, C.E.F.; Canterle, D.R.; Pumi, G.; Bayer, F.M. Beta Autoregressive Moving Average Model with the Aranda-Ordaz Link Function. Axioms 2024, 13, 806. https://doi.org/10.3390/axioms13110806
Manchini CEF, Canterle DR, Pumi G, Bayer FM. Beta Autoregressive Moving Average Model with the Aranda-Ordaz Link Function. Axioms. 2024; 13(11):806. https://doi.org/10.3390/axioms13110806
Chicago/Turabian StyleManchini, Carlos E. F., Diego Ramos Canterle, Guilherme Pumi, and Fábio M. Bayer. 2024. "Beta Autoregressive Moving Average Model with the Aranda-Ordaz Link Function" Axioms 13, no. 11: 806. https://doi.org/10.3390/axioms13110806
APA StyleManchini, C. E. F., Canterle, D. R., Pumi, G., & Bayer, F. M. (2024). Beta Autoregressive Moving Average Model with the Aranda-Ordaz Link Function. Axioms, 13(11), 806. https://doi.org/10.3390/axioms13110806