Approximating Fixed Points via Hybrid Enriched Contractions in Convex Metric Space with an Application
Abstract
:1. Introduction
- (i)
- is non-decreasing.
- (ii)
- For each sequence ⊂, iff
- (iii)
- is continuous on .
- (i)
- is non-decreasing.
- (ii)
- For each ,
- (iii)
- is continuous on .
2. Main Results
2.1. Hybrid Enriched Contraction of a Ćirić–Reich–Rus Type
2.2. Hybrid Enriched Contraction of a Hardy–Rogers Type
3. Applications
4. Conclusions and Future Scope
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Shukla, S. Partial b-metric spaces and fixed point theorems. Mediterr. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Zheng, D.; Cai, Z.; Wang, P. New fxed point theorems for θ − ϕ-contraction in complete metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 2662–2670. [Google Scholar] [CrossRef]
- Takahashi, W. A convexity in metric spaces and nonexpansive mappings. Kodai Math. Semin. Rep. 1970, 22, 142–149. [Google Scholar] [CrossRef]
- Beg, I. An iteration scheme for asymptotically nonexpansive mappings on uniformly convex metric spaces. Nonlinear Anal. Forum 2001, 6, 27–34. [Google Scholar]
- Beg, I.; Abbas, M. Common fixed points and best approximation in convex metric spaces. Soochow J. Math. 2007, 33, 729–738. [Google Scholar]
- Fukhar-ud-din, H.; Berinde, V. Iterative methods for the class of quasicontractive type operators and comparsion of their rate of convergence in convex metric spaces. Filomat 2016, 30, 223–230. [Google Scholar] [CrossRef]
- Naimpally, S.A.; Singh, K.L.; Whitfield, J.H.M. Fixed and common fixed points for nonexpansive mappings in convex metric spaces. Math. Semin. Notes II 1983, 11, 239–248. [Google Scholar]
- Talman, L.A. Fixed points for condensing multifunctions in metric spaces with convex structure. Kodai Math. Semin. Rep. 1977, 29, 62–70. [Google Scholar] [CrossRef]
- Karapinar, E. Revisiting the Kannan Type Contractions via Interpolation. Adv. Theory Nonlinear Anal. Its Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef]
- Noorwali, M.; Yeşilkaya, S.S. On Jaggi-Suzuki-Type Hybrid Contraction Mappings. J. Funct. Spaces 2021, 2021, 6721296. [Google Scholar] [CrossRef]
- Alzaid, S.S.; Fulga, A.; Alshammari, F.S. Discussion on Geraghty Type Hybrid Contractions. J. Funct. Spaces 2020, 2020, 6614291. [Google Scholar] [CrossRef]
- Karapınar, E.; Fulga, A. A hybrid contraction that involves Jaggi type. Symmetry 2019, 11, 715. [Google Scholar] [CrossRef]
- Karapınar, E.; Fulga, A. An admissible hybrid contraction with an ulam type stability. Demonstr. Math. 2019, 52, 428–436. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Aydi, H.; Noorani, M.S.M.; Qawaqneh, H. The weight inequalities on Reich type theorem in b-metric spaces. J. Math. Comput. Sci. 2019, 19, 51–57. [Google Scholar]
- Noorwali, M.; Yeşilkaya, S.S. New fixed point theorems for admissible hybrid maps. J. Funct. Spaces 2022, 2022, 5800790. [Google Scholar] [CrossRef]
- Jaggi, D. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230. [Google Scholar]
- Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 2008, 136, 1861–1869. [Google Scholar] [CrossRef]
- Anjali; Chugh, R.; Batra, C. Fixed point theorems of enriched Ciric’s type and enriched Hardy-Rogers contractions. Numer. Algebra Control Optim. 2023. [Google Scholar] [CrossRef]
- Berinde, V.; Păcurar, M. Fixed point theorems for enriched Ćirić–Reich–Rus contractions in Banach spaces and convex metric spaces. Carpathian J. Math. 2021, 37, 173–184. [Google Scholar] [CrossRef]
- Berinde, V.; Păcurar, M. Existence and approximation of fixed points of enriched contractions and enriched φ-contractions. Symmetry 2021, 13, 498. [Google Scholar] [CrossRef]
- Panicker, R.; Shukla, R. Stability results for enriched contraction mappings in convex metric spaces. Abstr. Appl. Anal. 2022, 2022, 5695286. [Google Scholar] [CrossRef]
- Rawat, S.; Bartwal, A.; Dimri, R.C. Approximation and existence of fixed points via interpolative enriched contractions. Filomat 2023, 37, 5455–5467. [Google Scholar] [CrossRef]
- Karapınar, E.; Alqahtani, O.; Aydi, H. On interpolative hardy-rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef]
- Debnath, P.; de La Sen, M. Fixed-points of interpolative Ćirić–Reich–Rus-type contractions in b-metric spaces. Symmetry 2019, 12, 12. [Google Scholar] [CrossRef]
- Krasnoselskij, M.A. Two remarks on the method of successive approximations. Mat. Nauk 1955, 10, 123–127. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, B.; Kaur, J.; Bhatia, S.S. Approximating Fixed Points via Hybrid Enriched Contractions in Convex Metric Space with an Application. Axioms 2024, 13, 815. https://doi.org/10.3390/axioms13120815
Rani B, Kaur J, Bhatia SS. Approximating Fixed Points via Hybrid Enriched Contractions in Convex Metric Space with an Application. Axioms. 2024; 13(12):815. https://doi.org/10.3390/axioms13120815
Chicago/Turabian StyleRani, Bhumika, Jatinderdeep Kaur, and Satvinder Singh Bhatia. 2024. "Approximating Fixed Points via Hybrid Enriched Contractions in Convex Metric Space with an Application" Axioms 13, no. 12: 815. https://doi.org/10.3390/axioms13120815
APA StyleRani, B., Kaur, J., & Bhatia, S. S. (2024). Approximating Fixed Points via Hybrid Enriched Contractions in Convex Metric Space with an Application. Axioms, 13(12), 815. https://doi.org/10.3390/axioms13120815