A New Family of Appell-Type Changhee Polynomials with Geometric Applications
Abstract
:1. Introduction and Preliminaries
2. Two-Variable Generalized Appell-Type -Changhee Polynomials
- Choosing in (23) gives the two-variable generalized Appell-type Changhee polynomials of order which are defined by
- Setting in (24) gives
- Setting in (23), we obtain
- Setting in (23), we obtain
- Setting in (23), we obtain
- Setting in (23), we obtain
- Setting in (23), we obtain
3. Symmetry Identities
- Symmetry identities for the two-variable truncated-exponential Appell-type Changhee polynomials of order s are obtained as
- Symmetry identities for the Gould–Hopper Appell-type -Changhee polynomials of order are obtained as
- Symmetry identities for the Hermite–Appell-based Appell-type -Changhee polynomials of order .
4. Computer Modeling and Zeros
- If is odd, the ETATCHP has one real zero and complex zeros.
- If is even, the ETATCHP has complex zeros.
- The zeros of the ETATCHP are symmetric with respect to the real axis.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adel, M.; Khader, M.M.; Babatin, M.M.; Youssef, M.Z. Numerical investigation for the fractional model of pollution for a system of lakes using the SCM based on the Appell type Changhee polynomials. AIMS Math. 2023, 8, 31104–31117. [Google Scholar] [CrossRef]
- Adel, M.; Khader, M.M.; Algelany, S. High-Dimensional Chaotic Lorenz System: Numerical Treatment Using Changhee Polynomials of the Appell Type. Fractal Fract. 2023, 7, 398. [Google Scholar] [CrossRef]
- Al-Jawfi, R.A.; Al-Helali, B.M.; Ahmed, A.M. Fractal image compression using self-organizing mapping. Appl. Math. 2014, 5, 1810–1819. [Google Scholar] [CrossRef]
- Benbernou, S.; Gala, S.; Ragusa, M.A. On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space. Math. Methods Appl. Sci. 2014, 37, 2320–2325. [Google Scholar] [CrossRef]
- Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258–277. [Google Scholar] [CrossRef]
- Boas, R.B.; Buck, R.C. Polynomial Expansions of Analytic Functions; Springer: Berlin, Germany, 2013. [Google Scholar]
- Khader, M.M.; Babatin, M.M.; Megahed, A.M. Non-Newtonian nanofluid flow across an exponentially stretching sheet with viscous dissipation: Numerical study using an SCM based on Appell—Changhee polynomials. Bound. Val. Prob. 2023, 2023, 77. [Google Scholar] [CrossRef]
- Zhuang, L.; Xu, A.; Wang, X. A prognostic driven predictive maintenance framework based on Bayesian deep learning. Reliab. Eng. Syst. Saf. 2023, 234, 109181. [Google Scholar] [CrossRef]
- Wang, W.; Cui, Z.; Chen, R.; Wang, Y.; Zhao, X. Regression analysis of clustered panel count data with additive mean models. Stat. Pap. 2023, 2023, 1–22. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, A.; Tang, Y.; Shen, L. Fast Bayesian inference of reparameterized gamma process with random effects. IEEE Trans. Reliab. 2023; in press. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on nonlinear Changhee differential equations. Russ. J. Math. Phys. 2016, 23, 88–92. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Seo, J.J. A note on Changhee polynomials and numbers. Adv. Stud. Theor. Phys. 2013, 7, 993–1003. [Google Scholar] [CrossRef]
- Lee, J.G.; Jang, L.-C.; Seo, J.-J.; Choi, S.-K.; Kwon, H.I. On Appell-type Changhee polynomials and numbers. Adv. Differ. Equ. 2016, 1, 160. [Google Scholar] [CrossRef]
- Lim, D.; Qi, F. On Appell type λ-Changhee polynomials. J. Nonlinear Sci. Appl. 2016, 9, 1872–1876. [Google Scholar] [CrossRef]
- Khan, S.; Raza, N. General-Appell polynomials within the context of monomiality principle. Int. J. Anal. 2013, 2013, 328032. [Google Scholar] [CrossRef]
- Gould, H.W.; Hopper, A.T. Operational formulas connected with two generalizations of Hermite polynomials. Duke. Math. J. 1962, 29, 51–63. [Google Scholar] [CrossRef]
- Cocolicchio, D.; Dattoli, G.; Srivastava, H.M. Advanced special functions and applications. In Proceedings of the First Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 9–12 May 1999; Aracne Editrice: Rome, Italy, 2000. [Google Scholar]
- Dattoli, G.; Migliorati, M.; Srivastava, H.M. A class of Bessel summation formulas and associated operational methods. Fract. Calc. Appl. Anal. 2004, 7, 169–176. [Google Scholar]
- Khan, S.; Yasmin, G.; Khan, R.; Hassan, N.A.M. Hermite-based Appell polynomials: Properties and applications. J. Math. Anal. Appl. 2009, 351, 756–764. [Google Scholar] [CrossRef]
- Kilar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605–1621. [Google Scholar]
- Srivastava, H.M.; Srivastava, R.; Muhyi, A.; Yasmin, G.; Islahi, H.; Araci, S. Construction of a new family of Fubini-type polynomials and its applications. Adv. Differ. Equ. 2021, 2021, 36. [Google Scholar] [CrossRef]
- Deeba, E.Y.; Rodriguez, D.M. Srirling’s series and Bernoulli numbers. Amer. Math. Mon. 1991, 98, 423–426. [Google Scholar] [CrossRef]
- Wani, S.A.; Choi, J. Truncated exponential based Frobenius-Genocchi and truncated exponential based Apostol type Frobenius-Genocchi polynomials. Montes Taurus J. Pure Appl. Math. 2022, 4, 85–96. [Google Scholar]
- Kim, D.S.; Kim, T.; Lee, H. A note on degenerate Euler and Bernoulli polynomials of complex variable. Symmetry 2019, 11, 1168. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Özarslan, M.A.; Yılmaz, B. Some families of differential equations associated with the Hermite-based Appell polynomials and other classes of Hermite-based polynomials. Filomat 2014, 28, 695–708. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Araci, S.; Khan, W.A.; Acikgoz, M. A note on the truncated-exponential based Apostol-type polynomials. Symmetry 2019, 11, 538. [Google Scholar] [CrossRef]
- Yasmin, G.; Islahi, H.; Muhyi, A. Certain results on a hybrid class of the Boas-Buck polynomials. Adv. Differ. Equ. 2020, 2020, 362. [Google Scholar] [CrossRef]
- Yasmin, G.; Muhyi, A. Certain results of hybrid families of special polynomials associated with Appell sequences. Filomat 2019, 33, 3833–3844. [Google Scholar] [CrossRef]
- Muhyi, A. A new class of Gould-Hopper-Eulerian-type polynomials. Appl. Math. Sci. Eng. 2022, 30, 283–306. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Seo, J.J.; Lee, S. Higher-order Changhee numbers and polynomials. Adv. Stud. Theor. Phys. 2014, 8, 365–373. [Google Scholar] [CrossRef]
- Pathan, M.A.; Khan, W.A. On λ-Changhee—Hermite polynomials. Analysis 2022, 42, 57–69. [Google Scholar] [CrossRef]
- Nahid, T.; Alam, P.; Choi, J. Truncated-Exponential-Based Appell-Type Changhee Polynomials. Symmetry 2020, 12, 1588. [Google Scholar] [CrossRef]
- Rim, S.H.; Park, J.J.; Pyo, S.S.; Kwon, J. The n-th twisted Changhee polynomials and numbers. Bull. Korean Math. Soc. 2015, 52, 741–749. [Google Scholar] [CrossRef]
- Jang, L.C.; Ryoo, C.S.; Seo, J.J.; Kwon, H.I. Some properties of the twisted Changhee polynomials and their zeros. Appl. Math. Comput. 2016, 274, 169–177. [Google Scholar] [CrossRef]
- Kim, B.M.; Jeong, J.; Rim, S.H. Some explicit identities on Changhee-Genocchi polynomials and numbers. Adv. Stud. Theor. Phys. 2014, 8, 365–373. [Google Scholar] [CrossRef]
- Steffensen, J.F. The poweriod, an extension of the mathematical notion of power. Acta. Math. 1941, 73, 333–366. [Google Scholar] [CrossRef]
- Dattoli, G. Hermite—Bessel and Laguerre–Bessel functions: A by-product of the monomiality principle. Adv. Spec. Funct. Appl. 1999, 1, 147–164. [Google Scholar]
- Bildirici, C.; Acikgoz, M.; Araci, S. A note on analogues of tangent polynomials. J. Algebra Number Theory Acad. 2014, 4, 21. [Google Scholar]
- Yang, S.L. An identity of symmetry for the Bernoulli polynomials. Discrete Math. 2008, 308, 550–554. [Google Scholar] [CrossRef]
- Özarslan, M.A. Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials. Adv. Differ. Equ. 2013, 2013, 116. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; Reprint of 1960 first edition; Chelsea Publishig Co.: Bronx, NY, USA, 1971. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jawfi, R.A.; Muhyi, A.; Al-shameri, W.F.H. A New Family of Appell-Type Changhee Polynomials with Geometric Applications. Axioms 2024, 13, 93. https://doi.org/10.3390/axioms13020093
Al-Jawfi RA, Muhyi A, Al-shameri WFH. A New Family of Appell-Type Changhee Polynomials with Geometric Applications. Axioms. 2024; 13(2):93. https://doi.org/10.3390/axioms13020093
Chicago/Turabian StyleAl-Jawfi, Rashad A., Abdulghani Muhyi, and Wadia Faid Hassan Al-shameri. 2024. "A New Family of Appell-Type Changhee Polynomials with Geometric Applications" Axioms 13, no. 2: 93. https://doi.org/10.3390/axioms13020093
APA StyleAl-Jawfi, R. A., Muhyi, A., & Al-shameri, W. F. H. (2024). A New Family of Appell-Type Changhee Polynomials with Geometric Applications. Axioms, 13(2), 93. https://doi.org/10.3390/axioms13020093