Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems
Abstract
:1. Introduction
- and ;
- ∃, ∀, is bounded, where , m is defined as the Lebesgue measure in .
- , , as ;
- ∃, which makes , , , , where ;
- ∃ satisfying , and , in which .
2. Preliminary Work
- (i)
- and its inverse function are odd, where ;
- (ii)
- , for all ;
- (iii)
- , for every ;
- (iv)
- , , , where ;
- (v)
- , for all .
3. The Solution of the Modified System
- there are makes valid for every with ;
- the existence of makes vaild.
4. Proof of Main Result
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Yang, H. Multiple Solutions for a Class of Quasilinear Schrödinger Systems in . Bull. Malays. Math. Sci. Soc. 2019, 42, 611–636. [Google Scholar] [CrossRef]
- Severo, U.; Silva, E. On the existence of standing wave solutions for a class of quasilinear Schr?dinger systems. J. Math. Anal. Appl. 2014, 412, 763–775. [Google Scholar] [CrossRef]
- Laedke, E.W.; Spatschek, K.H.; Stenflo, L. Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 1983, 24, 2764–2769. [Google Scholar] [CrossRef]
- Lange, H.; Toomire, B.; Zweifel, P.F. Time-dependent dissipation in nonlinear Schrödinger systems. J. Math. Phys. 1995, 36, 1274–1283. [Google Scholar] [CrossRef]
- Ritchie, B. Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 1994, 50, 687–689. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X.; Cheng, B.; Zhu, C. Some results on standing wave solutions for a class of quasilinear Schrödinger equations. J. Math. Phys. 2019, 60, 091506. [Google Scholar] [CrossRef]
- Liu, J.Q.; Wang, Z.Q. Soliton solutions for quasilinear Schrödinger equations I. Proc. Am. Math. Soc. 2002, 131, 441–448. [Google Scholar] [CrossRef]
- Severo, U.B. Symmetric and nonsymmetric solutions for a class of quasilinear Schrödinger equations. Adv. Nonlinear Stud. 2008, 8, 375–389. [Google Scholar] [CrossRef]
- Chen, J.; Chen, B.; Huang, X. Ground state solutions for a class of quasilinear Schrödinger equations with Choquard type nonlinearity. Appl. Math. Lett. 2020, 102, 106141. [Google Scholar] [CrossRef]
- Jeanjean, L. On the existence of bounded Palais–Smale sequences and application to a Landesman-Lazer type problem set on . Proc. R. Soc. Edinb. Sect. A 1999, 129, 787–809. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W.; Zhao, F. Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method. J. Math. Phys. 2018, 59, 081503. [Google Scholar] [CrossRef]
- Alves, C.O.; de Morais Filho, D.C. Existence of concentration of positive solutions for a Schrödinger logarithmic equation. Z. Angew. Math. Phys. 2018, 69, 144. [Google Scholar] [CrossRef]
- Duan, S.Z.; Wu, X. An existence result for a class of p-Laplacian elliptic systems involving homogeneous nonlinearities in . Nonlinear Anal. 2011, 74, 4723–4737. [Google Scholar] [CrossRef]
- Moameni, A. Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in . Differ. Equ. 2006, 229, 570–587. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q. Existence of positive ground state solutions for quasilinear Schrödinger system with positive parameter. Appl. Anal. 2022, 102, 2676–2691. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X. Ground states of Nehari-Pohožaev type for a quasilinear Schrödinger system with superlinear reaction. Electron. Res. Arch. 2023, 31, 2071–2094. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, Z. Ground state solutions for quasilinear Schrödinger systems. J. Math. Anal. Appl. 2012, 389, 322–339. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q. Positive solutions for quasilinear Schrödinger system with positive parameter. Z. Angew. Math. Phys. 2022, 73, 144. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q. Ground state solution of Nehari-Pohožaev type for periodic quasilinear Schrödinger system. J. Math. Phys. 2020, 61, 101510. [Google Scholar] [CrossRef]
- Li, G. On the existence of nontrivial solutions for quasilinear Schrödinger systems. Bound. Value Probl. 2022, 2022, 40. [Google Scholar] [CrossRef]
- Szulkin, A.; Weth, T. The method of Nehari manifold. In Handbook of Nonconvex Analysis and Applications; Gao, D.Y., Motreanu, D., Eds.; International Press: Boston, MA, USA, 2010; pp. 2314–2351. [Google Scholar]
- Alves, C.O.; Wang, Y.; Shen, Y. Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 2015, 259, 318–343. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z. Existence of solutions to quasilinear Schrödinger equations involving critical Sobolev exponent. Taiwan. J. Math. 2018, 22, 401–420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, J. Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems. Axioms 2024, 13, 182. https://doi.org/10.3390/axioms13030182
Zhang X, Zhang J. Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems. Axioms. 2024; 13(3):182. https://doi.org/10.3390/axioms13030182
Chicago/Turabian StyleZhang, Xue, and Jing Zhang. 2024. "Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems" Axioms 13, no. 3: 182. https://doi.org/10.3390/axioms13030182
APA StyleZhang, X., & Zhang, J. (2024). Nontrivial Solutions for a Class of Quasilinear Schrödinger Systems. Axioms, 13(3), 182. https://doi.org/10.3390/axioms13030182