Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain
Abstract
:1. Introduction and Definitions
2. Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Noor, K.I.; Malik, S.N. On a new class of analytic functions associated with conic domain. Comput. Math. Appl. 2011, 62, 367–375. [Google Scholar] [CrossRef]
- Malik, S.N.; Raza, M.; Sokół, J.; Zainab, S. Analytic functions associated with cardioid domain. Turk. J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient bounds for p-valent close-to-convex functions associated with vertical strip domain. Korean J. Math. 2021, 329, 95–407. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Tran. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions; Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. I 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Cruz, A.M.D.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef]
- Lavagno, A. Basic-deformed quantum mechanics. Rep. Math. Phys. 2009, 64, 79–88. [Google Scholar] [CrossRef]
- Kanas, S.; Altinkaya, S.; Yalcin, S. Subclass of k uniformly starlike functions defined by symmetric q-derivative operator. Ukr. Math. J. 2019, 70, 1727–1740. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Khan, M.F.; Khan, S.; Khan, N.; Younis, J.; Khan, B. Applications of q-symmetric derivative operator to the subclass of analytic and bi-univalent functions involving the faber polynomial coefficients. Math. Probl. Eng. 2022, 2022, 4250878. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain new subclass of multivalent q-starlike functions associated with q-symmetric calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Le Matematiche 2013, 68, 107–122. [Google Scholar]
- Zainab, S.; Raza, M.; Sokół, J.; Malik, S.N. On starlike functions associated with cardiod domain. Nouvelle série Tome 2021, 109, 95–107. [Google Scholar]
- Duren, P.L. Univalent Functions (Grundehren der Math Wiss); Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Ravichandran, V.; Gangadharan, A.; Darus, M. Fekete-Szego inequality for certain class of Bazilevic functions. Far East J. Math. Sci. 2004, 15, 171–180. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Raza, M.; Mushtaq, S.; Malik, S.N.; Sokół, J. Coefficient inequalities for analytic functions associated with cardioid domains. Hacet. J. Math. Stat. 2020, 49, 2017–2027. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Breaz, D.; Khan, S.; Tchier, F. Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain. Axioms 2024, 13, 366. https://doi.org/10.3390/axioms13060366
Srivastava HM, Breaz D, Khan S, Tchier F. Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain. Axioms. 2024; 13(6):366. https://doi.org/10.3390/axioms13060366
Chicago/Turabian StyleSrivastava, Hari M., Daniel Breaz, Shahid Khan, and Fairouz Tchier. 2024. "Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain" Axioms 13, no. 6: 366. https://doi.org/10.3390/axioms13060366
APA StyleSrivastava, H. M., Breaz, D., Khan, S., & Tchier, F. (2024). Certain New Applications of Symmetric q-Calculus for New Subclasses of Multivalent Functions Associated with the Cardioid Domain. Axioms, 13(6), 366. https://doi.org/10.3390/axioms13060366