Symmetric Identities Involving the Extended Degenerate Central Fubini Polynomials Arising from the Fermionic p-Adic Integral on ℤp
Abstract
:1. Introduction
2. Main Results
3. Further Remarks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Araci, S.; Duran, U.; Acikgoz, M. Symmetric identities involving q-Frobenius-Euler polynomials under Sym (5). Turk. Anal. Number Theory 2015, 3, 90–93. [Google Scholar] [CrossRef]
- Belbachir, H.; Djemmada, Y. On central Fubini-like numbers and polynomials. Miskolc Math. Notes 2022, 22, 77–90. [Google Scholar] [CrossRef]
- Butzer, P.L.; Schmidt, K.; Stark, E.; Vogt, E. Central factorial numbers; their main properties and some applications. Num. Func. Analy. Opt. 1989, 10, 419–488. [Google Scholar] [CrossRef]
- Carlitz, L. Degenerate Stirling Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Duran, U.; Acikgoz, M. Symmetric identities involving Carlitz’s-type twisted (h, q)-tangent-type polynomials under S5. J. New. Theory 2016, 12, 51–59. [Google Scholar]
- Khan, W.A.; Sharma, S.K. A new class of Hermite-based higher-order central Fubini polynomials. Int. J. Appl. Comput. Math. 2020, 6, 87. [Google Scholar] [CrossRef]
- Kilar, N.; Simsek, Y. A new family of Fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. J. Korean Math. Soc. 2017, 54, 1605–1621. [Google Scholar]
- Kilar, N.; Simsek, Y. Identities and relations for Fubini type numbers and polynomials via generating functions and p-adic integral approach. Publ. Inst. Math. 2019, 106, 113–123. [Google Scholar] [CrossRef]
- Kilar, N.; Simsek, Y. Formulas and relations of special numbers and polynomials arising from functional equations of generating functions. Montes Taurus J. Pure Appl. Math. 2021, 3, 106–123. [Google Scholar]
- Kilar, N.; Simsek, Y. Families of unified and modified presentation of Fubini numbers and polynomials. Montes Taurus J. Pure Appl. Math. 2023, 5, 1–21. [Google Scholar]
- Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on ℤp. Russ. J. Math. Phys. 2009, 16, 93–96. [Google Scholar] [CrossRef]
- Kim, T. On the analogs of Euler numbers and polynomials associated with p-adic q-integral on ℤp at q = −1. J. Math. Anal. Appl. 2007, 331, 779–792. [Google Scholar] [CrossRef]
- Kim, T. Some identities on the q-Euler polynomials of higher-order and q-Stirling numbers by the fermionic p-adic invariant integral on ℤp. Russ. J. Math. Phys. 2009, 16, 484–491. [Google Scholar] [CrossRef]
- Kim, T. Some p-adic integral on ℤp associated with trigonometric functions. Russ. J. Math. Phys. 2018, 25, 300–308. [Google Scholar] [CrossRef]
- Kim, D.S.; Kwon, J.; Dolgy, D.V.; Kim, T. On central Fubini polynomials associated with central factorial numbers of the second kind. Proc. Jangjeon Math. Soc. 2018, 21, 589–598. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate central Bell numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 133, 2507–2513. [Google Scholar] [CrossRef]
- Kim, D.S.; Dolgy, D.V.; Kim, T.; Kim, D. Extended degenerate r-central factorial numbers of the second kind and extended degenerate r-central Bell polynomials. Symmetry 2019, 11, 595. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. A note on central Bell numbers and polynomials. Russ. J. Math. Phys. 2020, 27, 76–81. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, G.-W.; Kim, D. Two variable higher order central Fubini polynomials. J. Ineq. Appli. 2019, 2019, 146. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate central factorial numbers of the second kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2019, 113, 3359–3367. [Google Scholar] [CrossRef]
- Kim, T.; Dolgy, D.V.; Seo, J.J. Identities of symmetry for degenerate q-Euler polynomials. Adv. Stud. Contemp. Math. 2015, 25, 577–582. [Google Scholar]
- Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 9, 288–299. [Google Scholar]
- Kim, T.; Kim, D.S.; Kim, H.Y. Some identities involving degenerate Stirling numbers arising from normal ordering. AIMS Math. 2022, 7, 17357–17368. [Google Scholar] [CrossRef]
- Kwon, J.; Kim, D.S.; Jang, L.-C.; Yao, Y. Some identities of central Fubini polynomials. Adv. Stud. Contemp. Math. 2019, 29, 171–178. [Google Scholar]
- Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New construction of type 2 of degenerate central Fubini polynomials with their certain properties. Adv. Differ. Equ. 2020, 587, 587. [Google Scholar] [CrossRef]
- Simsek, Y. Explicit formulas for p-adic integral: Approach to p-adic distributions and some families of special numbers and polynomials. Montes Taurus J. Pure Appl. Math. 2019, 1, 1–76. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatawi, M.S.; Khan, W.A.; Duran, U. Symmetric Identities Involving the Extended Degenerate Central Fubini Polynomials Arising from the Fermionic p-Adic Integral on ℤp. Axioms 2024, 13, 421. https://doi.org/10.3390/axioms13070421
Alatawi MS, Khan WA, Duran U. Symmetric Identities Involving the Extended Degenerate Central Fubini Polynomials Arising from the Fermionic p-Adic Integral on ℤp. Axioms. 2024; 13(7):421. https://doi.org/10.3390/axioms13070421
Chicago/Turabian StyleAlatawi, Maryam Salem, Waseem Ahmad Khan, and Ugur Duran. 2024. "Symmetric Identities Involving the Extended Degenerate Central Fubini Polynomials Arising from the Fermionic p-Adic Integral on ℤp" Axioms 13, no. 7: 421. https://doi.org/10.3390/axioms13070421
APA StyleAlatawi, M. S., Khan, W. A., & Duran, U. (2024). Symmetric Identities Involving the Extended Degenerate Central Fubini Polynomials Arising from the Fermionic p-Adic Integral on ℤp. Axioms, 13(7), 421. https://doi.org/10.3390/axioms13070421