Fractional-Order Sequential Linear Differential Equations with Nabla Derivatives on Time Scales
Abstract
:1. Introduction
2. Preliminaries
- (a)
- If , is represented by
- (b)
- If , then is represented by In particular, we have
- (1)
- If then
- (2)
- and if then
3. Fundamental Conceptions and the Structure of General Solutions on Sequential Linear Differential Equations of a Fractional Order
4. The Solution of Sequential Linear Differential Equations with Constant Coefficients
4.1. The Solution of Integral-Order Differential Equations in the Homogeneous Case
4.2. General Solution of Sequential Differential Equations of a Fractional Order in the Homogeneous Case
- (1)
- (2)
4.3. General Solution of the Sequential Differential Equations of a Fractional Order in the Non-Homogeneous Case
5. Solution of Fractional Sequential Differential Equations with Convolution
- (i)
- (ii)
- for any
5.1. Solutions around an Ordinary Point of a Fractional Differential Equation of Order
5.2. Solutions around an Ordinary Point of a Fractional Differential Equation of Order
6. Applications and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, W.; Cheng, H. A novel numerical inverse technique for multi-parameter time fractional radially symmetric anomalous diffusion problem with initial singularity. Comput. Math. Appl. 2024, 158, 95–101. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z. Stabilization Control for a Class of Fractional-Order HIV-1 Infection Model with Time Delays. Axioms 2023, 12, 695. [Google Scholar] [CrossRef]
- Malik, M.; Sajid, M.; Kumar, V. Controllability of singular dynamic systems on time scales. Asian J. Control 2022, 24, 2771–2777. [Google Scholar] [CrossRef]
- Zeng, C.; Chen, Y.Q. Optimal random search, fractional dynamics and fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 321–332. [Google Scholar] [CrossRef]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Diaz, R.; Osler, T.J. Differences of fractional order. Math. Comput. 1974, 28, 185–202. [Google Scholar] [CrossRef]
- Guo, G.C.; Baleanu, D. Chaos synchronization of the discrete fractional logistic map. Signal Process. 2014, 102, 96–99. [Google Scholar]
- Guo, G.C.; Baleanu, D. Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 2015, 80, 1697–1703. [Google Scholar]
- Guo, G.C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar]
- Guo, G.C.; Baleanu, D.; Zeng, S.D. Discrete chaos in fractional sine and standard maps. Phys. Lett. A 2014, 378, 484–487. [Google Scholar]
- Atici, F.M.; Eloe, P.W. A Transform Method in Discrete Fractional Calculus. Inter. J. Diff. Equ. 2007, 2, 165–176. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef]
- Atici, F.M.; Şengül, S. Modeling with fractional difference equations. J. Math. Anal. Appl. 2010, 369, 1–9. [Google Scholar] [CrossRef]
- Holm, M. Sum and Difference Compositions in Discrete Fractional Calculus. CUBO Math. J. 2011, 13, 153–184. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 2010, 51, 562–571. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. Discrecte fractional caculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I 2009, 2009, 1–12. [Google Scholar]
- Hilger, S. Analysis on measure chains a unified approach to continuous and discrete calculas. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Williams, P.A. Unifying Fractional Calculus with Time Scales. Doctoral Thesis, The University of Melbourne, Melbourne, Australia, 2012. [Google Scholar]
- Anastassiou, G.A. Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 2010, 59, 3750–3762. [Google Scholar] [CrossRef]
- Bastos, N. Fractional Calculus on Time Scales. Doctoral Thesis, The University of Aveiro, Aveiro, Portugal, 2012. [Google Scholar]
- Anastassiou, G.A. Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 2010, 52, 556–566. [Google Scholar] [CrossRef]
- Bastos, N.; Ferreira, R.; Torres, D. Discrete-time fractional variational problems. Sign. Proc. 2011, 91, 513–524. [Google Scholar] [CrossRef]
- Holm, M.T. The Laplace transform in discrete fractional calculus. Comput. Math. Appl. 2011, 62, 1591–1601. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, J. Fractional Cauchy problem with Riemann-Liouville derivative on time scales. Abstr. Appl. Anal. 2013, 2013, 795701. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, L. Fractional Cauchy Problem with Caputo Nabla Derivative on Time Scales. Abstr. Appl. Anal. 2015, 2015, 486054. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y. Fractional Cauchy Problem with Riemann-Liouville Fractional Delta Derivative on Time Scales. Abstr. Appl. Anal. 2013, 2013, 401596. [Google Scholar] [CrossRef]
- Duque, C.; Leiva, H.; Tridane, A. Relative asymptotic equivalence of dynamic equations on time scales. Adv. Contin. Discret. Models 2022, 2022, 4. [Google Scholar] [CrossRef]
- Fang, J.J.; Mou, D.S.; Zhang, H.C.; Wang, Y.Y. Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model. Optik 2021, 228, 166186. [Google Scholar] [CrossRef]
- Kisela, T. On dynamical systems with Nabla half derivative on time scales. Mediterr. J. Math. 2020, 17, 187. [Google Scholar] [CrossRef]
- Liu, M.; Dong, H.; Fang, Y.; Dong, H. Modelling and analysis of dynamic systems on time-space scales and application in burgers equation. J. Appl. Anal. Comput. 2022, 12, 2555–2577. [Google Scholar] [CrossRef]
- Messina, E.; Raffoul, Y.; Vecchio, A. Qualitative analysis of dynamic equations on time scales using Lyapunov functions. Diff. Equ. Appl. 2022, 14, 215–226. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Zeng, S.D.; Deng, Z.G. Discrete fractional diffusion equation. Nonlinear Dyn. 2015, 80, 281–286. [Google Scholar] [CrossRef]
- Gogoi, B.; Saha, U.K.; Hazarika, B. Existence of solution of a nonlinear fractional dynamic equation with initial and boundary conditions on time scales. J. Anal. 2024, 32, 85–102. [Google Scholar] [CrossRef]
- Gogoi, B.; Hazarika, B.; Saha, U.K.; Tikare, S. Periodic boundary value problems for fractional dynamic equations on time scales. Results Math. 2023, 78, 228. [Google Scholar] [CrossRef]
- Gogoi, B.; Saha, U.K.; Hazarika, B.; Torres, D.F.; Ahmad, H. Nabla Fractional Derivative and Fractional Integral on Time Scales. Axioms 2021, 10, 317. [Google Scholar] [CrossRef]
- Morsy, A.; Nisar, K.S.; Ravichandran, C.; Anusha, C. Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Math. 2023, 8, 5934–5949. [Google Scholar] [CrossRef]
- Kisela, T. Power functions and essentials of frational calculus on isolated time scales. Adv. Diff. Equ. 2013, 2013, 259. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Akdim, K.; Ez-Zetouni, A.; Zahid, M. The influence of awareness campaigns on the spread of an infectious disease: Aqualitative analysis of a fractional epidemic model. Model. Earth Syst. Environ. 2022, 8, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Bounkaicha, C.; Allali, K. Dynamics of a time fractional order spatio-temporal SIR with vaccination and temporary immunity. Partial Diff. Equ. Appl. Math. 2023, 7, 100524. [Google Scholar] [CrossRef]
- Paul, S.; Mahata, A.; Mukherjee, S.; Roy, B. Dynamics of SIQR epidemic model with fractional order derivative. Partial Diff. Equ. Appl. Math. 2022, 5, 100216. [Google Scholar] [CrossRef] [PubMed]
- Sadki, M.; Harroudi, S.; Allali, K. Fractional-order SIR epidemic model with treatment cure rate. Partial Diff. Equ. Appl. Math. 2023, 8, 100593. [Google Scholar] [CrossRef]
- Barros, L.C.; Lopes, M.M.; Pedro, F.S.; Esmi, E.; Santos, J.P.; Sánchez, D.E. The memory effect on fractional calculus: An application in the spread of COVID-19. Comput. Appl. Math. 2021, 40, 72. [Google Scholar] [CrossRef]
- Hamou, A.A.; Azroul, E.; Alaoui, A.L. Fractional Model and Numerical Algorithms for Predicting COVID-19 with Isolation and Quarantine Strategies. Int. J. Appl. Comput. Math. 2021, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, S.L.; Kadhim, M.S.; Khudair, A.R. Studying of COVID-19 fractional model: Stability analysis. Partial Diff. Equ. Appl. Math. 2023, 7, 100470. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.C.; Li, W.T.; Yang, F.Y. Traveling waves in a nonlocal dispersal SIRH model with relapse. Comput. Math. Appl. 2017, 73, 1707–1723. [Google Scholar] [CrossRef]
- Zhu, C.C.; Li, W.T.; Yang, F.Y. Traveling waves of a reaction-diffusion SIRQ epidemic model with relapse. J. Appl. Anal. Comput. 2017, 7, 147–171. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.-C.; Zhu, J. Fractional-Order Sequential Linear Differential Equations with Nabla Derivatives on Time Scales. Axioms 2024, 13, 447. https://doi.org/10.3390/axioms13070447
Zhu C-C, Zhu J. Fractional-Order Sequential Linear Differential Equations with Nabla Derivatives on Time Scales. Axioms. 2024; 13(7):447. https://doi.org/10.3390/axioms13070447
Chicago/Turabian StyleZhu, Cheng-Cheng, and Jiang Zhu. 2024. "Fractional-Order Sequential Linear Differential Equations with Nabla Derivatives on Time Scales" Axioms 13, no. 7: 447. https://doi.org/10.3390/axioms13070447
APA StyleZhu, C. -C., & Zhu, J. (2024). Fractional-Order Sequential Linear Differential Equations with Nabla Derivatives on Time Scales. Axioms, 13(7), 447. https://doi.org/10.3390/axioms13070447