Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents
Abstract
:1. Introduction
2. Proof of Theorems
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dautray, R.; Lions, J.L. Mathematical Analysis and Numerical Methods for Science and Technology. In Physical Origins and Classical Methods; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Joseph, D.D.; Lundgren, T.S. Quasilinear Dirichlet problem driven by positive sources. Arch. Ration. Mech. Anal. 1973, 49, 241–269. [Google Scholar] [CrossRef]
- Brezis, H.; Lieb, E. A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 1983, 88, 486–490. [Google Scholar] [CrossRef]
- Coleman, S.; Glazer, V.; Martin, A. Action minima among solutions to a class of Euclidean scalar field equations. Commun. Math. Phys. 1978, 58, 211–221. [Google Scholar] [CrossRef]
- Strauss, W. Existence of solitary waves in higher dimensions. Commun. Math. Phys. 1977, 55, 149–162. [Google Scholar] [CrossRef]
- Lions, P.L. Minimization problems in L1 (). J. Funct. Anal. 1981, 41, 236–275. [Google Scholar] [CrossRef]
- Kassymov, A.; Suragan, D. Multiplicity of positive solutions for a nonlinear equation with a Hardy potential on the Heisenberg group. Bull. Des Sci. Mathatiques 2020, 165, 102916. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.Q. Leray–Lions type p(x)-biharmonic equations involving Hardy potentials. Appl. Math. Lett. 2024, 149, 108907. [Google Scholar] [CrossRef]
- Fărcăşeanu, M. Isolated singularities for semilinear elliptic systems with Hardy potential. J. Math. Anal. Appl. 2023, 527, 127415. [Google Scholar] [CrossRef]
- Djellab, N.; Boureghda, A. A moving boundary model for oxygen diffusion in a sick cell. Comput. Methods Biomech. Biomed. 2022, 25, 1402–1408. [Google Scholar] [CrossRef]
- Boureghda, A.; Djellab, N. Du Fort-Frankel Finite Difference Scheme for Solving of Oxygen Diffusion Problem inside One Cell. J. Comput. Theor. Transp. 2023, 52, 363–373. [Google Scholar] [CrossRef]
- Lions, P.L. On the existence of positive solutions of semilinear elliptic equations. Slam Rev. 1982, 24, 441–467. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Brezis, H.; Cerami, G. Combined effects of concave and convex nonlinearities in some elliptic problem. J. Funct. Anal. 1994, 122, 519–543. [Google Scholar] [CrossRef]
- Rabinowitz, P.H. Minimax Methods in Critical Point Theory with Applictions to Differential Equations. In CBMS Regional Conference Series in Mathematics; AMS: Providence, RI, USA, 1986; Volume 65. [Google Scholar]
- Struwe, M. Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef]
- Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 1983, 36, 437–477. [Google Scholar] [CrossRef]
- Ekeland, I.; Ghoussoub, N. Selected new aspects of the calculus of variations in the large. Bull. Am. Math. Soc. 2002, 39, 207–265. [Google Scholar] [CrossRef]
- Palais, R.S.; Smale, S. A generalized Morse theory. Bull. Am. Math. Soc. 1964, 70, 165–172. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 1998, 144, 441–476. [Google Scholar] [CrossRef]
- Cao, D.M.; Peng, S.J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differ. Equ. 2003, 193, 424–434. [Google Scholar] [CrossRef]
- Azorero, J.P.G.; Alonso, I.P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 1991, 323, 877–895. [Google Scholar] [CrossRef]
- Padilla, P. The effect of the shape of the domain on the existence of solutions of an equation involving the critical Sobolev exponent. J. Differ. Equ. 1996, 124, 449–471. [Google Scholar] [CrossRef]
- Ferrero, A.; Gazzola, F. Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 2001, 177, 494–522. [Google Scholar] [CrossRef]
- Cao, D.M.; Han, P.G. Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 2004, 205, 521–537. [Google Scholar] [CrossRef]
- Jannelli, E. The role played by space dimension in elliptic critical problems. J. Differ. Equ. 1999, 156, 407–426. [Google Scholar] [CrossRef]
- Kang, D.S.; Deng, Y.B. Existence of solution for a singular critical elliptic equation. J. Math. Anal. Appl. 2003, 284, 724–732. [Google Scholar] [CrossRef]
- Kang, D.S.; Peng, S.J. Positive solutions for singular critical elliptic problems. Appl. Math. Lett. 2004, 17, 411–416. [Google Scholar] [CrossRef]
- Wang, M.C.; Zhang, Q. Existence of solutions for singular critical semilinear elliptic equation. Appl. Math. Lett. 2019, 94, 217–223. [Google Scholar] [CrossRef]
- Ding, L.; Tang, C.L. Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents. Appl. Math. Lett. 2007, 20, 1175–1183. [Google Scholar] [CrossRef]
- Ghoussoub, N.; Yuan, C. Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 2000, 352, 5703–5743. [Google Scholar] [CrossRef]
- Chou, K.S.; Chu, C.W. On the best constant for a weighted Sobolev-Hardy inequality. J. Lond. Math. Soc. 1993, 48, 137–151. [Google Scholar] [CrossRef]
- Wang, L.L.; Fan, Y.H. Existence and nonexistence of positive solutions for semilinear elliptic equations involving Hardy-Sobolev critical exponents. Mathematics 2024, 12, 1616. [Google Scholar] [CrossRef]
- Ding, L.; Tang, C.L. Existence and multiplicity of positive solutions for a class of semilinear elliptic equations involving Hardy terms and Hardy-Sobolev critical exponents. J. Math. Anal. Appl. 2008, 339, 1073–1083. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Sun, W.; Wang, L. Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Axioms 2024, 13, 450. https://doi.org/10.3390/axioms13070450
Fan Y, Sun W, Wang L. Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Axioms. 2024; 13(7):450. https://doi.org/10.3390/axioms13070450
Chicago/Turabian StyleFan, Yonghong, Wenheng Sun, and Linlin Wang. 2024. "Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents" Axioms 13, no. 7: 450. https://doi.org/10.3390/axioms13070450
APA StyleFan, Y., Sun, W., & Wang, L. (2024). Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Equations Involving Hardy–Sobolev Critical Exponents. Axioms, 13(7), 450. https://doi.org/10.3390/axioms13070450