Stability Analysis of a Credit Risk Contagion Model with Distributed Delay
Abstract
:1. Introduction
2. Model Formulation
3. Existence and Uniqueness of Solution
4. Stability and Hopf Bifurcation Analysis
4.1. Case are Weak Kernels
4.2. Case are Strong Kernels
5. Numerical Simulations
5.1. Time Process Diagrams of Credit Risk in Financial Market on
5.2. Time Process Diagrams of Credit Risk in Financial Market on
5.3. Real-World Application of the Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kai, X.; Mo, J.; Qian, Q.; Zhang, F.; Xie, X.; Zhou, Z. Associated credit risk contagion with incubatory period: A network-based perspective. Complexity 2020, 2020, 5642730. [Google Scholar]
- Chen, T.; Li, X.; He, J. Complex dynamics of credit risk contagion with time-delay and correlated noises. Abstr. Appl. Anal. 2014, 2014, 456764. [Google Scholar] [CrossRef]
- Gakkhar, S.; Singh, A. Complex dynamics in a prey predator system with multiple delays. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 914–929. [Google Scholar] [CrossRef]
- Anokye, M.; Donkoh, E.K.; Ofori, M.F.; Adom-Konadu, A. Full delay logistic population model with sustainable harvesting. J. Appl. Math. 2022, 2022, 6777827. [Google Scholar] [CrossRef]
- Anokye, M.; Barnes, B.; Boateng, F.O.; Adom-Konadu, A.; Amoah-Mensahand, J. Price dynamics of a delay differential cobweb model. Discret. Dyn. Nat. Soc. 2023, 2023, 1296562. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, S. Stochastic resonance in FitzHugh-Nagumo system with time-delayed feedback. Phys. Lett. A 2008, 32, 5299–5304. [Google Scholar] [CrossRef]
- Anokye, M.; Adom-Konadu, A.; Sackitey, A.L.; Ofori, M.F. Delay logistic model with harvesting on weighted average population. Adv. Dyn. Syst. Appl. 2022, 17, 467–481. [Google Scholar]
- Wangersky, W.J.; Cunningham, P.J. Time lag in population models. Cold Spring Harbor Symp. Quant. Biol. 1957, 22, 329–338. [Google Scholar] [CrossRef]
- Erneux, T. Applied Delay Differential Equations; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Ma, Y. Global Hopf bifurcation in the Leslie-Gower predator-prey model with two delays. Nonlinear Anal. Real World Appl. 2012, 13, 370–375. [Google Scholar] [CrossRef]
- Song, Y.; Wei, J.; Han, M. Local and global Hopf bifurcation in a delayed hematopoiesis model. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2004, 14, 3909–3919. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Yin, Q. Dynamics evolution of credit risk contagion in the CRT market. Discret. Dyn. Nat. Soc. 2013, 2013, 206201. [Google Scholar] [CrossRef]
- Fanelli, V.; Maddalena, L. A nonlinear dynamic model for credit risk contagion. Math. Comput. Simul. 2020, 174, 45–58. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Y.; Zhao, L.; Liang, W. Research on the mechanism and application of spatial credit risk contagion based on complex network model. Manag. Decis. Econ. 2024, 45, 1180–1193. [Google Scholar] [CrossRef]
- Chen, N.; Fan, H. Credit risk contagion and optimal dual control-An SIS/R model. Math. Comput. Simul. 2024, 210, 448–472. [Google Scholar] [CrossRef]
- Irakoze, I.; Nahayo, F.; Ikpe, D.; Gyamerah, S.A.; Viens, F. Mathematical modeling and stability analysis of systemic risk in the banking ecosystem. J. Appl. Math. 2023, 2023, 5628621. [Google Scholar] [CrossRef]
- Aliano, M.; Canana, L.; Cestari, G.; Ragni, S. A dynamical model with time delay for risk contagion. Mathematics 2023, 11, 425. [Google Scholar] [CrossRef]
- Chen, T.; Yang, Q.; Wang, Y.; Wang, S. Double-layer network model of bank-enterprise counterparty credit risk contagion. Complexity 2020, 2020, 3690848. [Google Scholar] [CrossRef]
- Ma, G.; Ding, J.; Lv, Y. The credit risk contagion mechanism of financial guarantee network: An Application of the SEIR-epidemic model. Complexity 2022, 2022, 7669259. [Google Scholar] [CrossRef]
- Sui, X.; Wen, H.; Gao, J.; Lu, S. Research on contagion and the influencing factors of personal credit risk based on a complex network. Discret. Dyn. Nat. Soc. 2022, 2022, 4730479. [Google Scholar] [CrossRef]
- Ebrahimi Dehshalie, M.; Kabiri, M.; Ebrahimi Dehshali, M. Stability analysis and fixed-time control of credit risk contagion. Math. Comput. Simul. 2021, 190, 131–139. [Google Scholar] [CrossRef]
- Bianca, C.; Guerrini, L. Hopf bifurcations in a delayed microscopic model of credit risk contagion. Appl. Math. Inf. 2015, 9, 1493–1497. [Google Scholar]
- Elaiw, A.M.; Al Agha, A.D. A reaction-diffusion model for oncolytic M1 virotherapy with distributed delays. Eur. Phys. J. Plus 2020, 135, 1–40. [Google Scholar]
- Sargood, A.; Gaffney, E.A.; Krause, A.L. Fixed and distributed gene expression time delays in reaction-diffusion systems. Bull. Math. Biol. 2022, 84, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Dunlavey, M.; Guzy, S.; Teuscher, N. A distributed delay approach for modeling delayed outcomes in pharmacokinetics and pharmacodynamics studies. J. Pharmacokinet. Pharmacodyn. 2018, 45, 285–308. [Google Scholar] [CrossRef] [PubMed]
- Cushing, J.M. Integrodifferential Equations and Delay Models in Population Dynamics; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Hernandez, E.; Wu, J. Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Proc. Edinb. Math. Soc. 2019, 62, 771–788. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netgerlands, 1998. [Google Scholar]
- Ahmadian, A.; Ismail, F.; Senu, N.; Salahshour, S.; Suleiman, M. Toward the existence and uniqueness of solutions for fractional integro-differential equations under uncertainty. AIP Conf. Proc. 2016, 1739, 020034. [Google Scholar]
- MacDonald, N. Time Lags in Biological Models; Springer: New York, NY, USA, 1978. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anokye, M.; Guerrini, L.; Sackitey, A.L.; Assabil, S.E.; Amankwah, H. Stability Analysis of a Credit Risk Contagion Model with Distributed Delay. Axioms 2024, 13, 483. https://doi.org/10.3390/axioms13070483
Anokye M, Guerrini L, Sackitey AL, Assabil SE, Amankwah H. Stability Analysis of a Credit Risk Contagion Model with Distributed Delay. Axioms. 2024; 13(7):483. https://doi.org/10.3390/axioms13070483
Chicago/Turabian StyleAnokye, Martin, Luca Guerrini, Albert L. Sackitey, Samuel E. Assabil, and Henry Amankwah. 2024. "Stability Analysis of a Credit Risk Contagion Model with Distributed Delay" Axioms 13, no. 7: 483. https://doi.org/10.3390/axioms13070483
APA StyleAnokye, M., Guerrini, L., Sackitey, A. L., Assabil, S. E., & Amankwah, H. (2024). Stability Analysis of a Credit Risk Contagion Model with Distributed Delay. Axioms, 13(7), 483. https://doi.org/10.3390/axioms13070483