Existence Result for a Class of Time-Fractional Nonstationary Incompressible Navier–Stokes–Voigt Equations
Abstract
:1. Introduction
2. Variational Formulation
3. Existence of Solutions
- (i)
- ;
- (ii)
- .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anh, C.T.; Nguyet, T.M. Optimal control of the instationary three dimensional Navier-Stokes-Voigt equations. Numer. Funct. Anal. Optim. 2016, 37, 415–439. [Google Scholar] [CrossRef]
- Anh, C.T.; Trang, P.T. Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains. Proc. R. Soc. Edinb. Sect. A 2013, 143, 223–251. [Google Scholar] [CrossRef]
- García-Luengo, J.; Marín-Rubio, P.; Real, J. Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations. Nonlinearity 2012, 25, 905–930. [Google Scholar] [CrossRef]
- Kalantarov, V.K.; Titi, E.S. Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight equations. J. Nonlinear Sci. 2009, 19, 133–152. [Google Scholar] [CrossRef]
- Yue, G.; Zhong, C.K. Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voigt equations. Discret. Contin. Dyn. Syst. Ser. B 2011, 16, 985–1002. [Google Scholar]
- Ahn, J.; Kim, J.; Lee, J. Coriolis effect on temporal decay rates of global solutions to the fractional Navier-Stokes equations. Math. Ann. 2022, 383, 259–289. [Google Scholar] [CrossRef]
- Carvalho-Neto, P.M.D.; Planas, G. Mild solutions to the time fractional Navier-Stokes equations in . J. Differ. Equ. 2015, 259, 2948–2980. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.-G. Some compactness criteria for weak solutions of time fractional PDE’s. SIAM J. Math. Anal. 2018, 50, 3963–3995. [Google Scholar] [CrossRef]
- Li, X.C.; Yang, X.Y.; Zhang, Y.H. Error estimates of mixed finite element methods for time-fractional Navier-Stokes equations. J. Sci. Comput. 2017, 70, 500–515. [Google Scholar] [CrossRef]
- Peng, L.; Debbouche, A.; Zhou, Y. Existence and approximations of solutions for time-fractional Navier-Stokes equations. Math. Meth. Appl. Sci. 2018, 41, 8973–8984. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, L. On the time-fractional Navier-Stokes equations. Comput. Math. Appl. 2017, 73, 874–891. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, L. Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 2017, 73, 1016–1027. [Google Scholar] [CrossRef]
- Zeng, B. Feedback control for non-stationary 3D Navier-Stokes-Voigt equations. Math. Mech. Solids 2020, 25, 2210–2221. [Google Scholar] [CrossRef]
- Zeng, B. Feedback control for nonlinear evolutionary equations with applications. Nonlinear Anal. RWA 2022, 66, 103535. [Google Scholar] [CrossRef]
- Zeng, B. Existence for a class of time-fractional evolutionary equations with applications involving weakly continuous operator. Fract. Calc. Appl. Anal. 2023, 26, 172–192. [Google Scholar] [CrossRef]
- Zeng, B.; Migórski, S. Evolutionary subgradient inclusions with nonlinear weakly continuous operators and applications. Comput. Math. Appl. 2018, 75, 89–104. [Google Scholar] [CrossRef]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies 204; Elsevier Science B.V.: Amsterdam, The Netherland, 2006. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Contantin, P.; Foias, C. Navier-Stokes Equations; Chicago Lectures in Mathematics; University of Chicago Press: Chicago, IL, USA, 1988. [Google Scholar]
- Temam, R. Navier-Stokes Equations: Theory and Numerical Analysis; American Mathematical Society: Providence, RI, USA, 2001. [Google Scholar]
- Kačur, J. Method of Rothe in Evolution Equations; Teubner-Texte zur Mathematik 80; B.G. Teubner: Leipzig, Germany, 1985. [Google Scholar]
- Roubiček, T. Nonlinear Partial Differential Equations with Applications; Birkhäuser: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 2005. [Google Scholar]
- Han, J.F.; Migórski, S.; Zeng, H.D. Weak solvability of a fractional viscoelastic frictionless contact problem. Appl. Math. Comput. 2017, 303, 1–18. [Google Scholar] [CrossRef]
- Zeng, S.D.; Migórski, S. A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 34–48. [Google Scholar] [CrossRef]
- Francǔ, J. Weakly continuous operators, Applications to differential equations. Appl. Math. 1994, 39, 45–56. [Google Scholar] [CrossRef]
- Carstensen, C.; Gwinner, J. A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Ann. Mat. Pura Appl. 1999, 177, 363–394. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Zeng, B. Existence Result for a Class of Time-Fractional Nonstationary Incompressible Navier–Stokes–Voigt Equations. Axioms 2024, 13, 499. https://doi.org/10.3390/axioms13080499
Xu K, Zeng B. Existence Result for a Class of Time-Fractional Nonstationary Incompressible Navier–Stokes–Voigt Equations. Axioms. 2024; 13(8):499. https://doi.org/10.3390/axioms13080499
Chicago/Turabian StyleXu, Keji, and Biao Zeng. 2024. "Existence Result for a Class of Time-Fractional Nonstationary Incompressible Navier–Stokes–Voigt Equations" Axioms 13, no. 8: 499. https://doi.org/10.3390/axioms13080499
APA StyleXu, K., & Zeng, B. (2024). Existence Result for a Class of Time-Fractional Nonstationary Incompressible Navier–Stokes–Voigt Equations. Axioms, 13(8), 499. https://doi.org/10.3390/axioms13080499