The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds
Abstract
:1. Introduction
2. Preliminaries
3. Quasi-Conformally Flat Warped Product Manifolds
- 1.
- the Riemann tensor of N is given by
- 2.
- N is of constant curvature given that and .
- 3.
- N is Einstein given that and .
A quasi-conformally flat manifold N | ||
Trivial | N is Einstein | |
N is conformally flat, Equation (11) holds | N is of constant curvature |
- 1.
- N is conformally flat and the scalar curvature of N is given by
- 2.
- The Ricci curvature of the base manifold is given by
- 3.
- The fiber manifold is of constant curvature.
- 1.
- Einstein, given that is proportional to the metric tensor;
- 2.
- Quasi-Einstein manifold, given that for some constant λ and a 1-form u.
4. Quasi-Conformally Symmetric Manifolds
- 1.
- If , then N is Ricci-symmetric.
- 2.
- If , then N is Cartan-symmetric.
- 3.
- If , then the Weyl tensor is harmonic, the Ricci tensor is of Codazzi type, the Riemann tensor is divergence-free, and
A non-trivial quasi-conformally symmetric manifold N | ||
N is Ricci-symmetric | ||
N is Cartan-symmetric | ||
C is harmonic, is divergence-free, Equation (44) holds |
- 1.
- The base manifold is Ricci-symmetric if and only if is parallel.
- 2.
- The fiber manifold is Einstein.
- 1.
- The base manifold is Cartan-symmetric.
- 2.
- The fiber manifold is of constant curvature.
- 3.
- The tensor is covariantly constant.
- 1.
- The Ricci tensor of the base manifold is of Codazzi type if and only if is of Codazzi type.
- 2.
- The fiber manifold is Cartan-symmetric .
- 3.
- The tensor is covariantly constant.
5. Divergence-Free Quasi-Conformal Curvature Tensor
- 1.
- N has constant scalar curvature: In this case the conformal curvature tensor and the Riemann curvature tensor are both harmonic given that is non-zero.
- 2.
- : In this case the conformal curvature tensor is harmonic.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yano, K.; Sawaki, S. Riemannian manifolds admitting a conformal transformation group. J. Differ. Geom. 1968, 2, 161–184. [Google Scholar] [CrossRef]
- De, U.C.; Jun, J.B.; Gazi, A.K. Sasakian manifolds with quasi-conformal curvature tensor. Bull. Korean Math. Soc. 2008, 45, 313–319. [Google Scholar] [CrossRef]
- De, U.C.; Sarkar, A. On the quasi-conformal curvature tensor of a (κ, μ)-contact metric manifold. Math. Rep. 2012, 14, 115–129. [Google Scholar]
- Prasad, R. On (κ, μ)-Manifolds with Quasi-Conformal Curvature Tensor. Int. J. Contemp. Math. Sci. 2010, 5, 1663–1676. [Google Scholar]
- Dey, D.; Majhi, P. On the quasi-conformal curvature tensor of an almost Kenmotsu manifold with nullity distributions. Facta Univ. Ser. Math. Inform. 2018, 33, 255–268. [Google Scholar] [CrossRef]
- Chaturvedi, B.B.; Gupta, B.K. Quasi-conformal curvature tensor of generalized Sasakian-space-forms. Facta Univ. Math. Inform. 2020, 35, 089–099. [Google Scholar] [CrossRef]
- Hazra, D.; Sarkar, A. Quasi-conformal curvature tensor on N(k)-quasi einstein manifolds. Korean J. Math. 2021, 29, 801–810. [Google Scholar]
- De, U.C.; Matsuyama, Y. Quasi-conformally flat manifolds satisfying certain condition on the Ricci tensor. SUT J. Math. 2006, 42, 295–303. [Google Scholar] [CrossRef]
- Mantica, C.A.; Suh, Y.J. Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds. Balkan J. Geom. Appl. 2011, 16, 66–77. [Google Scholar]
- Mantica, C.A.; Suh, Y.J. Pseudo Zsymmetric Riemannian manifolds with harmonic curvature tensors. Int. J. Geom. Methods Mod. Phys. 2012, 9, 1250004. [Google Scholar] [CrossRef]
- Chaki, M.C.; Ghosh, M.L. On quasi conformally flat and quasiconformally conservative Riemannian manifolds. Annu. Sci. Univ. I. CUZA IASI Tomul XXXVIII SIa Math. 1997, f2, 375–381. [Google Scholar]
- Ünal, İ.; Sarı, R. On quasi-conformal flat para-Sasakian manifolds. Turk. J. Math. Comput. Sci. 2020, 12, 86–91. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Roy, I. On Quasi-Conformally Recurrent Manifolds with Harmonic Quasi-Conformal Curvature Tensor. Kyungpook Math. J. 2011, 51, 109–124. [Google Scholar] [CrossRef]
- Ayar, G. Pseudo-projective and quasi-conformal curvature tensors on Riemannian submersions. Math. Appl. Sci. 2021, 44, 13791–13798. [Google Scholar] [CrossRef]
- Guler, S.; Demirbag, S.A. On some classes of generalized quasi Einstein manifolds. Filomat 2015, 29, 443–456. [Google Scholar] [CrossRef]
- De, U.C.; Hazra, D. Impact of quasi-conformal curvature tensor in space-times and f (R, G)-gravity. Eur. Phys. J. Plus 2023, 138, 1–12. [Google Scholar] [CrossRef]
- Mallick, S.; Zhao, P.; De, U.C. Spacetimes admitting quasi-conformal curvature tensor. Bull. Iran. Soc. 2016, 42, 1535–1546. [Google Scholar]
- Baishya, K.K.; Chowdhury, P.R. On generalized quasi-conformal N(k, μ)-manifolds. Commun. Korean Math. Soc. 2016, 31, 163–176. [Google Scholar] [CrossRef]
- Suh, Y.J.; Chavan, V.; Pundeer, N.A. Pseudo-quasi-conformal curvature tensor and spacetimes of general relativity. Filomat 2021, 35, 657–666. [Google Scholar] [CrossRef]
- Yildirim, Ü.; Atceken, M.; Dirik, S. Pseudo-Quasi Conformal Curvature Tensor on Normal Paracontact Metric Space Forms. Turk. J. Math. Comput. Sci. 2020, 12, 49–55. [Google Scholar]
- An, X.; Wong, W.W.Y. Warped product space-times. Class. Quantum Gravity 2017, 35, 025011. [Google Scholar] [CrossRef]
- Beem, J.K.; Ehrlich, P.E.; Powell, T.G. Warped product manifolds in relativity, Selected Studies: Physics-Astrophysics. In Mathematics, History of Science; Rassias, T.M., Rassias, G.M., Eds.; North-Holland: New York, NY, USA, 1982; pp. 41–56. [Google Scholar]
- Chen, B.-Y. Differential Geometry of Warped Product Manifolds and Submanifolds; World Scientific Publishing: Singapore, 2017. [Google Scholar]
- Chojnacka-Dulas, J.; Deszcz, R.; Głogowska, M.; Prvanović, M. On warped product manifolds satisfying some curvature conditions. J. Geom. Phys. 2013, 74, 328–341. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z. The Weyl problem in warped product spaces. J. Differ. Geom. 2020, 114, 243–304. [Google Scholar] [CrossRef]
- Tojeiro, R. Conformal immersions of warped products. Geom. Dedicata 2007, 128, 17–31. [Google Scholar] [CrossRef]
- Melia, F. The Friedmann–Lemaître–Robertson–Walker metric. Mod. Phys. Lett. A 2022, 37, 2250016. [Google Scholar] [CrossRef]
- Visser, M. Conformally Friedmann–Lemaître–Robertson–Walker cosmologies. Class. Quantum Gravity 2015, 32, 135007. [Google Scholar] [CrossRef]
- Agaoka, Y.; Kim, I.B.; Kim, B.H.; Yeom, D.J. On doubly warped product manifolds. Mem. Fac. Integr. Arts Sci. Hiroshima Univ. Ser. IV 1998, 24, 1–10. [Google Scholar]
- Dobarro, F.; Unal, B. Curvature of multiply warped products. J. Geom. Phys. 2005, 55, 75–106. [Google Scholar] [CrossRef]
- Unal, B. Doubly warped products. Differ. Geom. Its Appl. 2001, 15, 253–263. [Google Scholar] [CrossRef]
- De, U.C.; Shenawy, S.; Ünal, B. Concircular curvature on warped product manifolds and applications. Bull. Malays. Math. Sci. Soc. 2020, 43, 3395–3409. [Google Scholar] [CrossRef]
- De, U.C.; Syied, A.A.; Bin Turki, N.; Alsaeed, S. A Study of Generalized Projective P-Curvature Tensor on Warped Product Manifolds. J. Math. 2021, 2021, 7882356. [Google Scholar] [CrossRef]
- Shenawy, S.; Rabie, A.; De, U.C.; Mantica, C.; Turki, N.B. Semi-Conformally Flat Singly Warped Product Manifolds and Applications. Axioms 2023, 12, 1078. [Google Scholar] [CrossRef]
- Karaca, F.; Özgür, C. On quasi-Einstein sequential warped product manifolds. J. Geom. Phys. 2021, 165, 104248. [Google Scholar] [CrossRef]
- Karaca, F.; Özgur, C. Gradient Ricci-harmonic solitons on doubly warped product manifolds. Filomat 2023, 37, 5969–5977. [Google Scholar] [CrossRef]
- Karaca, F.; Özgür, C. On sequential warped product manifolds admitting gradient Ricci-harmonic solitons. Phys. Scr. 2023, 98, 085213. [Google Scholar] [CrossRef]
- Shenawy, S.; De, U.C.; Turki, N.B.; Pundeer, N.A. Projective collineations in warped product manifolds and (PRS) n manifolds. Symmetry 2023, 15, 1644. [Google Scholar] [CrossRef]
- Blaga, A.M.; Özgür, C. Killing and 2-Killing vector fields on doubly warped products. Mathematics 2023, 11, 4983. [Google Scholar] [CrossRef]
- Blaga, A.M.; Özgür, C. 2-Killing vector fields on multiply warped product manifolds. Chaos Solitons Fractals 2024, 180, 114561. [Google Scholar] [CrossRef]
- Mishra, R.S. Structures on Differentiable Manifold and Their Applications; Chandrama Prakasana: Allahabad, India, 1984. [Google Scholar]
- Pokhariyal, G.P.; Mishra, R.S. Curvature tensors and their relativistics significance. Yokohama Math. J. 1970, 18, 105–108. [Google Scholar]
- Pokhariyal, G.P. Relativistic significance of curvature tensors. Int. J. Math. Math. 1982, 5, 133–139. [Google Scholar] [CrossRef]
- Pokhariyal, G.P. Curvature tensors on A-Einstein Sasakian manifolds. Balk. J. Geom. Its Appl. 2001, 6, 45–50. [Google Scholar]
- Yano, K. Some Remarks on Tensor Fields and Curvature. Ann. Math. Second. Ser. 1952, 55, 328–347. [Google Scholar] [CrossRef]
- Deszcz, R. On some class of warped product manifolds. Bull. Inst. Math. Acad. Sin. 1987, 15, 311–322. [Google Scholar]
- Deszcz, R. On Ricci-pseudo-symmetric warped products. Demonstr. Math. 1989, 22, 1053–1066. [Google Scholar] [CrossRef]
- Deszcz, R.; Verstraelen, L.; Vrancken, L. The symmetry of warped product space-times. Gen. Relativ. Gravit. 1991, 23, 671–681. [Google Scholar] [CrossRef]
- Mofarreh, F.; Ali, A.; Alluhaibi, N.; Belova, O. Ricci Curvature for Warped Product Submanifolds of Sasakian Space Forms and Its Applications to Differential Equations. J. Math. 2021, 2021, 1207646. [Google Scholar] [CrossRef]
- Prvanovic, M. On warped product manifolds. Filomat 1995, 169–185. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.-Y.; Shenawy, S.; De, U.C.; Rabie, A.; Bin Turki, N. The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds. Axioms 2024, 13, 500. https://doi.org/10.3390/axioms13080500
Chen B-Y, Shenawy S, De UC, Rabie A, Bin Turki N. The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds. Axioms. 2024; 13(8):500. https://doi.org/10.3390/axioms13080500
Chicago/Turabian StyleChen, Bang-Yen, Sameh Shenawy, Uday Chand De, Alaa Rabie, and Nasser Bin Turki. 2024. "The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds" Axioms 13, no. 8: 500. https://doi.org/10.3390/axioms13080500
APA StyleChen, B. -Y., Shenawy, S., De, U. C., Rabie, A., & Bin Turki, N. (2024). The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds. Axioms, 13(8), 500. https://doi.org/10.3390/axioms13080500