The Limiting Behaviors of the Gutman and Schultz Indices in Random 2k-Sided Chains
Abstract
:1. Introduction
- with probability ;
- with probability ;
- with probability ;⋮ ⋮ ⋮
- with probability ;
- with probability .
- (a)
- Under Hypothesis 1, we give analytical expressions for the variances of and .
- (b)
- We prove that the random variables and are asymptotic to normal distributions when . That is
2. The Limiting Behavior of the Gutman Index of a Random Polygon Chain
- (i) The Gutman index of , which is a random 2k-sided chain, is , and the variance in it is determined by
- Equality 1.
- Equality 2.
- Equality 3.
- Equality 4.
3. The Limiting Behavior of the Schultz Index of a Random Polygon Chain
- (i) The Schultz index of , which is a random –sided chain, is , and the variance in it is determined by
- Equality 1.
- Equality 2.
- Equality 3.
- Equality 4.
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: New York, NY, USA, 2008. [Google Scholar]
- Flower, D.R. On the Properties of Bit String-Based Measures of Chemical Similarity. J. Chem. Inf. Comput. Sci. 1998, 38, C379–C386. [Google Scholar] [CrossRef]
- Pavlyuchko, A.I.; Vasiliev, E.V.; Gribov, L.A. Quantum chemical estimation of the overtone contribution to the IR spectra of hydrocarbon halogen derivatives. J. Struct. Chem. 2010, 51, C1045–C1051. [Google Scholar] [CrossRef]
- Hosoya, H. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. J. Bull. Chem. Soc. Jpn. 2006, 44, 2332–2339. [Google Scholar] [CrossRef]
- Estrada, E. Edge Adjacency Relationships and a Novel Topological Index Related to Molecular Volume. J. Chem. Inf. Comput. Sci. 1995, 35, 31–33. [Google Scholar] [CrossRef]
- Wiener, H. Structrual determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Buckley, F.; Harary, F. Distance in Graphs; Addison-Wesley: Reading, PA, USA, 1989. [Google Scholar]
- Entringer, R.C.; Jackson, D.E.; Snyder, D.A. Distance in graphs. Czechoslov. Math. J. 1976, 26, 283–296. [Google Scholar] [CrossRef]
- Chen, A.L.; Zhang, F.J. Wiener index and perfect matchings in random phenylene chains. MATCH Commun. Math. Comput. Chem. 2009, 61, 623–630. [Google Scholar]
- Zhou, Q.N.; Wang, L.G.; Lu, Y. Wiener index and Harary index on Hamiltonconnected graphs with large minimum degree. J. Discret. Appl. Math. 2018, 247, 180–185. [Google Scholar] [CrossRef]
- Ayache, A.; Alameri, A. Topological indices of the mk-graph. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 24, 283–291. [Google Scholar]
- Gutman, I. Selected properties of the Schultz molecular topological index. J. Chem. Inf. Comput. Sci. 1994, 34, 1087–1089. [Google Scholar] [CrossRef]
- Chen, S. Modified Schultz index of zig-zag polyhex nanotubes. J. Comput. Theor. Nanosci. 2009, 6, 1499–1503. [Google Scholar] [CrossRef]
- Farahani, M.R. Hosoya, Schultz, modified Schultz polynomials and their topological indices of benzene molecules: First members of polycyclic aromatic hydrocarbons (PAHs). Int. J. Theor. Chem. 2013, 1, 9–16. [Google Scholar]
- Heydari, A. On the modified Schultz index of C4C8(S) nanotubes and nanotorus. Digest. J. Nanomater. Biostruct. 2010, 5, 51–56. [Google Scholar]
- Xiao, Z.; Chen, S. The modified Schultz index of armchair polyhex nanotubes. J. Comput. Theor. Nanosci. 2009, 6, 1109–1114. [Google Scholar] [CrossRef]
- Mukwembi, S.; Munyira, S. MunyiraDegree distance and minimum degree. Bull. Aust. Math. Soc. 2013, 87, 255–271. [Google Scholar] [CrossRef]
- Person, W.B.; Pimentel, G.C.; Pitzer, K.S. The Structure of Cyclooctatetraene. J. Am. Chem. Soc. 1952, 74, 3437–3438. [Google Scholar] [CrossRef]
- Cope, A.C.; Pike, R.M.; Polyolefins, C. Cyclooctatetraene Derivatives from Copolymerization and Side Chain Modification. J. Am. Chem. Soc. 1953, 75, 3220–3223. [Google Scholar] [CrossRef]
- Donald, H.L.; Whitehead, M.A. Molecular geometry and bond energy. III. Cyclooctatetraene and related compounds. J. Am. Chem. Soc. 1969, 91, 238–242. [Google Scholar]
- Serbezeanu, D.; Popa, A.M.; Sava, I.; Carja, I.D.; Amberg, M.; Rossi, R.M.; Fortunato, G. Design and synthesis of polyimide—Gold nanofibers with tunable optical properties. J. Eur. Polym. J. 2015, 64, 10–20. [Google Scholar] [CrossRef]
- Bonchev, D.; Rouvray, D.H. Chemical Graph Theory: Introduction and Fundamentals. J. Math. Chem. 1991, 7, 5971–5987. [Google Scholar]
- Zhang, L.L.; Li, Q.S.; Li, S.C.; Zhang, M.J. The expected values for the Schultz index, Gutman index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain. J. Discret. Applited Math. 2020, 282, 243–256. [Google Scholar] [CrossRef]
- Qi, J.; Ni, J.; Geng, X. The expected values for the Kirchhoff indices in the random cyclooctatetraene and spiro chains. J. Discret. Applited Math. 2022, 321, 240–249. [Google Scholar] [CrossRef]
- Zhang, J.L.; Peng, X.H.; Chen, H.L. The limiting behaviours for the Gutman index, Schultz index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain. Discrete Appl. Math. 2021, 299, C62–C73. [Google Scholar] [CrossRef]
- Tao, C.; Tang, S.J.; Geng, X.Y. Statistical Analyses of a Class of Random Cyclooctatetraene Chain Networks with Respect to Several Topological Properties. Symmetry 2023, 15, 1971. [Google Scholar] [CrossRef]
- Zhu, W.L.; Fang, M.L.; Geng, X.Y. Enumeration of the Gutman and Schultz indices in the random polygonal chains. Math. Biosci. Eng. 2022, 19, 10826–10845. [Google Scholar] [CrossRef] [PubMed]
- Gutman, I. Degree-Based Topological Indices. Croat. Chem. Acta 2013, 86, 351–361. [Google Scholar] [CrossRef]
- Petrov, V.V. Limit Theorems of Probability Theory Sequences of Independent Random Variables; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley Series in Probability and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1971. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, C.; Tang, S.; Geng, X. The Limiting Behaviors of the Gutman and Schultz Indices in Random 2k-Sided Chains. Axioms 2024, 13, 518. https://doi.org/10.3390/axioms13080518
Tao C, Tang S, Geng X. The Limiting Behaviors of the Gutman and Schultz Indices in Random 2k-Sided Chains. Axioms. 2024; 13(8):518. https://doi.org/10.3390/axioms13080518
Chicago/Turabian StyleTao, Chen, Shengjun Tang, and Xianya Geng. 2024. "The Limiting Behaviors of the Gutman and Schultz Indices in Random 2k-Sided Chains" Axioms 13, no. 8: 518. https://doi.org/10.3390/axioms13080518
APA StyleTao, C., Tang, S., & Geng, X. (2024). The Limiting Behaviors of the Gutman and Schultz Indices in Random 2k-Sided Chains. Axioms, 13(8), 518. https://doi.org/10.3390/axioms13080518