Statistical Cesàro Summability in Intuitionistic Fuzzy n-Normed Linear Spaces Leading towards Tauberian Theorems
Abstract
:1. Introduction
Existing Research Gaps and Novelty of the Current Work
2. Preliminaries
- (i)
- ;
- (ii)
- and for all positive r if and only if are linearly dependent;
- (iii)
- and are invariant under any permutation of ;
- (iv)
- and if ;
- (v)
- ;
- (vi)
- ;
- (vii)
- and are continuous in r;
- (viii)
- and ;
- (ix)
- and .
- (i)
- .
- (ii)
- .
- (iii)
- .
- (iv)
- .
- (v)
- .
- (i)
- If , then for each with .
- (ii)
- If , then for each , where .
- (i)
- If , then for each with , we have.
- (ii)
- If , then for each with , we have.
3. Statistical Cesàro summability in IFnNLS
4. Additional Results Leading to Tauberian Theorems
- (i)
- If the -statistical limit of x is ξ, and the -statistical limit of y is ρ, then the -statistical limit of the sum is .
- (ii)
- If the -statistical limit of x is ξ, and α is any real number, then the -statistical limit of is .
5. Conclusions and Future Work
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inform. Cont. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Anastassiou, A. Fuzzy approximation by fuzzy convolution type operators. Comput. Math. Appl. 2004, 48, 1369–1386. [Google Scholar] [CrossRef]
- Jäger, G. Fuzzy uniform convergence and equicontinuity. Fuzzy Sets Syst. 2000, 109, 187–198. [Google Scholar] [CrossRef]
- Wu, K. Convergences of fuzzy sets based on decomposition theory and fuzzy polynomial function. Fuzzy Sets Syst. 2000, 109, 173–185. [Google Scholar] [CrossRef]
- Erceg, M.A. Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 1979, 69, 205–230. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some result in fuzzy metric space. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Kaleva, O.; Seikkala, S. On fuzzy metric spaces. Fuzzy Sets Syst. 1984, 12, 215–229. [Google Scholar] [CrossRef]
- Madore, J. Fuzzy physics. Ann. Phys. 1992, 219, 187–198. [Google Scholar] [CrossRef]
- Fradkov, A.L.; Evans, R.J. Control of chaos: Methods and applications in engineering. Chaos Solitons Fractals 2005, 29, 33–56. [Google Scholar] [CrossRef]
- Giles, R. A computer program for fuzzy reasoning. Fuzzy Sets Syst. 1980, 4, 221–234. [Google Scholar] [CrossRef]
- Barros, L.C.; Bassanezi, R.C.; Tonelli, P.A. Fuzzy modelling in population dynamics. Ecol. Model. 2000, 128, 27–33. [Google Scholar] [CrossRef]
- Hong, L.; Sun, J.Q. Bifurcations of fuzzy nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2006, 1, 1–12. [Google Scholar] [CrossRef]
- Katsaras, A.K. Fuzzy topological vector spaces. Fuzzy Sets Syst. 1984, 12, 143–154. [Google Scholar] [CrossRef]
- Bag, T.; Samanta, S.K. A comparative study of fuzzy norms on a linear space. Fuzzy Sets Syst. 2008, 159, 670–684. [Google Scholar] [CrossRef]
- Felbin, C. Finite dimensional fuzzy normed linear spaces. Fuzzy Sets Syst. 1992, 48, 239–248. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Zhu, X.H. Fuzzy normed spaces of operators and its completeness. Fuzzy Sets Syst. 2003, 133, 389–399. [Google Scholar] [CrossRef]
- Narayanan, A.; Vijayabalaji, S.; Thillaigovindan, N. Intuitionistic fuzzy bounded linear operators. Iran. J. Fuzzy Syst. 2007, 4, 89–101. [Google Scholar]
- Saadati, R.; Park, J.H. On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 2006, 27, 331–344. [Google Scholar] [CrossRef]
- Sen, M.; Debnath, P. Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces. Math. Comput. Model. 2011, 54, 2978–2985. [Google Scholar] [CrossRef]
- Sen, M.; Debnath, P. Statistical convergence in intuinionistic fuzzy n-normed linear spaces. Fuzzy Inf. Eng. 2011, 3, 259–273. [Google Scholar] [CrossRef]
- Asama, A.; Dutta, H.; Natarajan, P.N. An Introductory Course in Summability Thoery; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Dutta, H.; Rhoades, B.E. Current Topics in Summability Thoery and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Talo, O.; Yavuz, E. Cesàro summability of sequences in intuitionistic fuzzy normed spaces and related Tauberian theorems. Soft Comput. 2020, 25, 2315–2323. [Google Scholar] [CrossRef]
- Onder, Z.; Karakahya, S.; Canak, I. Tauberian theorems for the statistical Cesaro summability method in intuitionistic fuzzy normed spaces. Soft Comput. 2024, 28, 87–104. [Google Scholar] [CrossRef]
- Debnath, P. Some results on Cesáro summability in intuinionistic fuzzy n-normed linear spaces. Sahand Commun. Math. Anal. 2022, 19, 77–87. [Google Scholar]
- George, V.; Romaguera, S.; Veeramani, P. A note on intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2006, 28, 902–905. [Google Scholar]
- Lael, F.; Nourouzi, K. Some results on the IF-normed spaces. Chaos Solitons Fractals 2008, 373, 931–939. [Google Scholar] [CrossRef]
- Yilmaz, Y. On some basic properites of differentiation in intuitionistic fuzzy normed spaces. Math. Comput. Model. 2010, 52, 448–458. [Google Scholar] [CrossRef]
- Debnath, P.; Sen, M. Some completeness results in terms of infinite series and quotient spaces in intuinionistic fuzzy n-normed linear spaces. J. Intell. Fuzzy Syst. 2014, 26, 975–982. [Google Scholar] [CrossRef]
- Debnath, P.; Sen, M. Some results of calculus for functions having values in an intuinionistic fuzzy n-normed linear space. J. Intell. Fuzzy Syst. 2014, 26, 2983–2991. [Google Scholar] [CrossRef]
- Vijayabalaji, S.; Thillaigovindan, N.; Jun, Y.B. Intuitionistic fuzzy n-normed linear space. Bull. Korean. Math. Soc. 2007, 44, 291–308. [Google Scholar] [CrossRef]
- Efe, H.; Alaca, C. Compact and bounded sets in intuitionistic fuzzy metric spaces. Demonstr. Math. 2014, 40, 449–456. [Google Scholar]
- Fast, H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244. [Google Scholar] [CrossRef]
- Talo, O.; Basar, F. Necessary and sufficient Tauberian conditions for the Ar method of summability. Math. J. Okayama Univ. 2018, 60, 209–219. [Google Scholar]
- Debnath, P. Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces. Comput. Math. Appl. 2012, 63, 708–715. [Google Scholar] [CrossRef]
- Debnath, P. Results on lacunary difference ideal convergence in intuitionistic fuzzy normed linear spaces. J. Intell. Fuzzy Syst. 2015, 28, 1299–1306. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debnath, P. Statistical Cesàro Summability in Intuitionistic Fuzzy n-Normed Linear Spaces Leading towards Tauberian Theorems. Axioms 2024, 13, 557. https://doi.org/10.3390/axioms13080557
Debnath P. Statistical Cesàro Summability in Intuitionistic Fuzzy n-Normed Linear Spaces Leading towards Tauberian Theorems. Axioms. 2024; 13(8):557. https://doi.org/10.3390/axioms13080557
Chicago/Turabian StyleDebnath, Pradip. 2024. "Statistical Cesàro Summability in Intuitionistic Fuzzy n-Normed Linear Spaces Leading towards Tauberian Theorems" Axioms 13, no. 8: 557. https://doi.org/10.3390/axioms13080557
APA StyleDebnath, P. (2024). Statistical Cesàro Summability in Intuitionistic Fuzzy n-Normed Linear Spaces Leading towards Tauberian Theorems. Axioms, 13(8), 557. https://doi.org/10.3390/axioms13080557