Semi-Classical Limit and Quantum Corrections in Non-Coincidence Power-Law f(Q)-Cosmology
Abstract
:1. Introduction
2. Symmetric Teleparallel -Gravity
2.1. STEGR
2.2. -Gravity
2.3. Equivalency with Scalar Field Theory
2.4. Conformal Transformation
3. Isotropic and Homogeneous Cosmology
3.1. Symmetries
3.2. Symmetric and Flat Connection
3.3. Field Equations in -Gravity
3.4. Minisuperspace Description
4. The Wheeler–DeWitt Equation
4.1. Connection
4.2. Power-Law Theory
5. Similarity Transformations
6. Semiclassical Limit
6.1. Classical Solution
Physical Properties of the Asymptotic Solutions
6.2. Quantum Potential
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nester, J.M.; Yo, H.-J. Symmetric teleparallel general relativity. Chin. J. Phys. 1998, 37, 113. [Google Scholar]
- Conroy, A.; Koivisto, T. The spectrum of symmetric teleparallel gravity. Eur. Phys. J. C 2018, 78, 923. [Google Scholar] [CrossRef]
- Adak, M.; Sert, O.; Kalay, M.; Sari, M. Symmetric Teleparallel Gravity: Some exact solutions and spinor couplings. Int. J. Mod. Phys. A 2013, 28, 1350167. [Google Scholar] [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- Hohmann, M. Variational Principles in Teleparallel Gravity Theories. Universe 2021, 7, 114. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f(Q) gravity. Phys. Rep. 2024, 1066, 1. [Google Scholar] [CrossRef]
- Tsamparlis, M. Cosmological principle and torsion. Phys. Lett. A 1979, 75, 27. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Non-Riemannian Geometry, American Mathematical Society, Colloquium Publications Vol. VIII; JSTOR: New York, NY, USA, 1927. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. The three-dimensional power spectrum of galaxies from the sloan digital sky survey. Astrophys. J. 2004, 606, 702. [Google Scholar] [CrossRef]
- Kowalski, M.; Rubin, D.; Aldering, G.; Agostinho, R.J.; Amadon, A.; Amanullah, R.; Balland, C.; Barbary, K.; Blanc, G.; Challis, P.J.; et al. Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 2008, 686, 749. [Google Scholar] [CrossRef]
- Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.E.A.; et al. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. Astrophys. J. Suppl. Ser. 2009, 180, 330. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, Ö.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49. [Google Scholar]
- Lynch, G.P.; Knox, L.; Chluba, J. DESI and the Hubble tension in light of modified recombination. arXiv 2024, arXiv:2406.10202. [Google Scholar]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.S. Coincident general relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.S.; Pekar, S. Cosmology in f(Q)-geometry. Phys. Rev. D 2020, 101, 103507. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f (R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Bengochea, G.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef]
- Nunes, R.C. Structure formation in f(T) gravity and a solution for H0 tension. J. Cosmol. Astropart. Phys. 2018, 2018, 052. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1. [Google Scholar]
- Myrzakulov, R. FRW Cosmology in F(R,T) gravity. Eur. Phys. J. C 2012, 72, 1. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bamba, K.; Bhatti, M.Z.; Farwa, U. Quasi-static evolution of axially and reflection symmetric large-scale configuration. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2430005. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bamba, K.; Almutairi, B.; Bhatti, M.Z.; Rizwan, M. Fuzzy Dark Matter Less-complex Wormhole Structures in Extended Theories of Gravity. arXiv 2024, arXiv:2405.08354. [Google Scholar]
- Paliathanasis, A.; Dimakis, N.; Christodoulakis, T. Minisuperspace description of f(Q)-cosmology. Phys. Dark. Universe 2024, 43, 101410. [Google Scholar] [CrossRef]
- Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D 2018, 97, 124025. [Google Scholar] [CrossRef]
- Gakis, V.; Kršxsxák, M.; Said, J.L.; Saridakis, E.N. Conformal gravity and transformations in the symmetric teleparallel framework. Phys. Rev. D 2020, 101, 064024. [Google Scholar] [CrossRef]
- Gomes, D.A.; Jimenez, J.B.; Cano, A.J. Koivisto, T.S. Pathological Character of Modifications to Coincident General Relativity: Cosmological Strong Coupling and Ghosts in f(Q) Theories. Phys. Rev. Lett. 2024, 132, 141401. [Google Scholar] [CrossRef]
- Heisenberg, L.; Hohmann, M. Gauge-invariant cosmological perturbations in general teleparallel gravity. Eur. Phys. J. C 2024, 84, 462. [Google Scholar] [CrossRef]
- Atayde, L.; Frusciante, N. Can f(Q) gravity challenge ΛCDM? Phys. Rev. D 2021, 104, 064052. [Google Scholar] [CrossRef]
- De, A.; Mandal, S.; Beh, J.T.; Loo, T.-H. Isotropization of locally rotationally symmetric Bianchi-I universe in f(Q)-gravity. Eur. Phys. J. C 2022, 82, 72. [Google Scholar] [CrossRef]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. First evidence that non-metricity f(Q) gravity could challenge ΛCDM. Phys. Lett. B 2021, 822, 136634. [Google Scholar] [CrossRef]
- Arora, S.; Sahoo, P.K. Crossing Phantom Divide in f(Q) Gravity. Ann. Phys. 2022, 534, 2200233. [Google Scholar] [CrossRef]
- Calza, M.; Sebastiani, L. A class of static spherically symmetric solutions in f(Q)-gravity. Eur. Phys. J. C 2022, 83, 247. [Google Scholar] [CrossRef]
- Khyllep, W.; Paliathanasis, A.; Dutta, J. Cosmological solutions and growth index of matter perturbations in f(Q) gravity. Phys. Rev. D 2021, 103, 103521. [Google Scholar] [CrossRef]
- Solanki, R.; De, A.; Sahoo, P.K. Complete dark energy scenario in f(Q) gravity. Phys. Dark Universe 2022, 36, 100996. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Fell, S.D.B.; Heisenberg, L.; Kuhn, S. Black holes in f(Q) gravity. Phys. Rev. D 2022, 105, 024042. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Well-defined f(Q) Gravity, Reconstruction of FLRW Spacetime and Unification of Inflation with Dark Energy Epoch. Phys. Dark Universe 2024, 45, 101538. [Google Scholar] [CrossRef]
- Narawade, S.A.; Singh, S.P.; Mishra, B. Accelerating cosmological models in f(Q) gravity and the phase space analysis. Phys. Dark. Universe 2023, 42, 101282. [Google Scholar] [CrossRef]
- De, A.; Loo, T.-H. On the viability of f(Q) gravity models. Class. Quantum Gravity 2023, 40, 115007. [Google Scholar] [CrossRef]
- Guzman, M.-J.; Järv, L.; Pati, L. Exploring the stability of f(Q) cosmology near general relativity limit with different connections. arXiv 2024, arXiv:2406.11621. [Google Scholar]
- Xu, Y.; Li, G.; Harko, T.; Liang, S.-D. f(Q,T) gracity. Eur. Phys. J. C 2019, 79, 708. [Google Scholar] [CrossRef]
- Bello-Morales, A.G.; Jiménez, J.B.; Cano, A.J.; Maroto, A.L.; Koivisto, T.S. A class of ghost-free theories in symmetric teleparallel geometry. arXiv 2024, arXiv:2406.19355. [Google Scholar]
- Paliathanasis, A. Attractors in f(Q,B)-gravity. Phys. Dark Universe 2024, 45, 101519. [Google Scholar] [CrossRef]
- De, A.; Loo, T.-H.; Saridakis, E.N. Non-metricity with bounday terms: F(Q,C) gravity and cosmology. J. Cosmol. Astropart. Phys. 2024, 3, 050. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. F(Q) gravity with Gauss-Bonnet corrections: From early-time inflation to late-time acceleration. arXiv 2024, arXiv:2406.12558. [Google Scholar]
- Paliathanasis, A. The Brans–Dicke field in non-metricity gravity: Cosmological solutions and conformal transformations. Eur. Phys. J. C 2024, 84, 125. [Google Scholar] [CrossRef]
- Järv, L.; Pati, L. Stability of symmetric teleparallel scalar-tensor cosmologies with alternative connections. Phys. Rev. D 2024, 109, 064069. [Google Scholar] [CrossRef]
- Kim, S.P. Problem of unitarity and quantum corrections in semiclassical quantum gravity. Phys. Rev. D 1997, 55, 7511. [Google Scholar] [CrossRef]
- Wiltshire, D. An Introduction to Quantum Cosmology. In Cosmology: The Physics of the Universe; Canberra International Physics Summer Schools: Canberra, Australia, 1996; pp. 473–531. [Google Scholar] [CrossRef]
- Halliwell, J.J. Introductory lectures on quantum cosmology. arXiv 2009, arXiv:0909.2566. [Google Scholar]
- Tsamparlis, M.; Paliathanasis, A. Symmetries of differential equations in cosmology. Symmetry 2018, 10, 233. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Cieplak, M.; Kaminski, J. Theory of Quanta; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Tsubota, M.; Kobayashi, M.; Takeuchi, H. Quantum hydrodynamics. Phys. Rep. 2013, 522, 191. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 1952, 85, 166. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180. [Google Scholar] [CrossRef]
- Pinto-Neto, N. The de Broglie–Bohm Quantum Theory and Its Application to Quantum Cosmology. Universe 2021, 7, 134. [Google Scholar] [CrossRef]
- Licasa, I.; Fiscaletti, D. The Quantum Potential in Gravity and Cosmology. In Quantum Potential: Physics, Geometry and Algebra; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Callender, C.; Weingard, R. The Bohmian Model of Quantum Cosmology; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- O’Hanlon, J. Intermediate-Range Gravity: A Generally Covariant Model. Phys. Rev. Lett. 1972, 29, 137. [Google Scholar] [CrossRef]
- Raine, D.J. Mach’s principle and space-time structure. Rep. Prog. Phys. 1981, 44, 1151. [Google Scholar] [CrossRef]
- Dimakis, N.; Duffy, K.J.; Giacomini, A.; Kamenshchik, A.Y.; Leon, G.; Paliathanasis, A. Mapping solutions in nonmetricity gravity: Investigating cosmological dynamics in conformal equivalent theories. Phys. Dark. Universe 2024, 44, 101436. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Heisenberg, L.; Kuhn, S. Revisiting cosmologies in teleparallelism. Class. Quantum Gravity 2022, 39, 025013. [Google Scholar] [CrossRef]
- Zhao, D. Covariant formulation of f(Q) theory. Eur. Phys. J. C 2022, 82, 303. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A.; Christodoulakis, T. Quantum cosmology in f(Q) theory. Class. Quantum Gravity 2021, 38, 225003. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A.; Christodoulakis, T. Exploring quantum cosmology within the framework of teleparallel f(T) gravity. Phys. Rev. D 2024, 109, 024031. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Tronconi, A.; Vardanyan, T.; Venturi, G. Time in quantum theory, the Wheeler–DeWitt equation and the Born–Oppenheimer approximation. Int. J. Mod. Phys. D 2019, 28, 1950072. [Google Scholar] [CrossRef]
- Paliathanasis, A. Dynamical analysis of f(Q)-cosmology. Phys. Dark Universe 2023, 41, 101255. [Google Scholar] [CrossRef]
- Dimakis, N.; Roumeliotis, M.; Paliathanasis, A.; Apostolopoulos, P.S.; Christodoulakis, T. Self-similar cosmological solutions in symmetric teleparallel theory: Friedmann-Lemaître-Robertson-Walker spacetimes. Phys. Rev. D 2022, 106, 123516. [Google Scholar] [CrossRef]
- Paliathanasis, A. The impact of the non-coincidence gauge on the dark energy dynamics in f(Q)-gravity. Gen. Relativ. Gravit. 2023, 55, 130. [Google Scholar] [CrossRef]
- Clifton, T.; Barrow, J.D. The power of general relativity. Phys. Rev. D 2005, 72, 103005. [Google Scholar] [CrossRef]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws; CRS Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Paliathanasis, A.; Tsamparlis, M.; Basilakos, S.; Barrow, J.D. Classical and Quantum Solutions in Brans-Dicke Cosmology with a Perfect Fluid. Phys. Rev. D 2016, 93, 043528. [Google Scholar] [CrossRef]
- Christodoulakis, T.; Karagiorgos, A.; Zampeli, A. Symmetries in Classical and Quantum Treatment of Einstein’s Cosmological Equations and Mini-Superspace Actions. Symmetry 2018, 10, 70. [Google Scholar] [CrossRef]
- Zampeli, A.; Pailas, T.; Terzis, P.A.; Christodoulakis, T. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities. J. Cosmol. Astropart. Phys. 2016, 05, 066. [Google Scholar] [CrossRef]
- Dutta, S.; Lakshmanan, M.; Chakraborty, S. Quantum cosmology for non-minimally coupled scalar field in FLRW space–time: A symmetry analysis. Ann. Phys. 2019, 407, 1. [Google Scholar] [CrossRef]
- Vakili, B. Noether symmetric f(R) quantum cosmology and its classical correlations. Phys. Lett. B 2008, 669, 206. [Google Scholar] [CrossRef]
- Cordero, R.; Granados, V.D.; Mota, R.D. Novel Complete Non-compact Symmetries for the Wheeler-DeWitt Equation in a Wormhole Scalar Model and Axion-Dilaton String Cosmology. Class. Quantum Gravity 2011, 28, 185002. [Google Scholar] [CrossRef]
- Laya, D.; Bhaumik, R.; Chakraborty, S. Noether symmetry analysis in scalar tensor cosmology: A study of classical and quantum cosmology. Eur. Phys. J. C 2023, 83, 701. [Google Scholar] [CrossRef]
- Gryb, S.; Thebault, K.P.Y. Bouncing unitary cosmology I. Mini-superspace general solution. Class. Quantum Gravity 2019, 36, 035009. [Google Scholar] [CrossRef]
- Gielen, S.; Menendez-Pidal, L. Singularity resolution depends on the clock. Class. Quantum Gravity 2020, 37, 205018. [Google Scholar] [CrossRef]
- Paliathanasis, A. Dipole Cosmology in f (Q)-gravity. Phys. Dark Universe 2024, 46, 101585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliathanasis, A. Semi-Classical Limit and Quantum Corrections in Non-Coincidence Power-Law f(Q)-Cosmology. Axioms 2024, 13, 619. https://doi.org/10.3390/axioms13090619
Paliathanasis A. Semi-Classical Limit and Quantum Corrections in Non-Coincidence Power-Law f(Q)-Cosmology. Axioms. 2024; 13(9):619. https://doi.org/10.3390/axioms13090619
Chicago/Turabian StylePaliathanasis, Andronikos. 2024. "Semi-Classical Limit and Quantum Corrections in Non-Coincidence Power-Law f(Q)-Cosmology" Axioms 13, no. 9: 619. https://doi.org/10.3390/axioms13090619
APA StylePaliathanasis, A. (2024). Semi-Classical Limit and Quantum Corrections in Non-Coincidence Power-Law f(Q)-Cosmology. Axioms, 13(9), 619. https://doi.org/10.3390/axioms13090619