Robust State Feedback Control with D-Admissible Assurance for Uncertain Discrete Singular Systems
Abstract
:1. Introduction
- To the best of our knowledge, few works focus on the state feedback control with D-admissible assurance for uncertain discrete singular systems subjected to parameter uncertainties in both the difference term and system matrices. This work is mainly devoted to the state feedback control with D-admissible issues for the considered systems.
- For all of the design criteria that can be derived in terms of the strict LMIs, a state feedback controller with prescribed performance requirements can be readily conducted via current LMI tools.
2. Preliminaries on Discrete Singular Systems
- 1.
- The matrix pair is asserted to be regular if .
- 2.
- The matrix pair is asserted to be causal if and deg[det()] = .
- 3.
- Let the characteristic polynomial of the nominal system be . The nominal system is asserted to be D-admissible, if it is regular, causal, and all of the finite solutions of satisfy , where . And, the nominal system is asserted to be admissible, if it is regular, causal, and all of the finite solutions of satisfy
3. D-Admissibility and State Feedback Control
- Step 1:
- Based on the descriptor system (1) with (2) and (3), denote a set of Ei by (2), and M, , and by (3).
- Step 2:
- Denote a matrix S which is of full-column rank and satisfies EiPS = 0, .
- Step 3:
- Initially denote with a compatible dimension.
- Step 4:
- Construct, respectively, LMI constraint sets by (12) and (13) with D-admissible assurance or (14) and (15) with admissible assurance.
- Step 5:
- Evaluate the constructed LMIs from the LMI tool [37] for existing solutions P > 0, and scalars .
- Step 6:
- If the LMIs are feasible, a satisfying control gain can be evaluated by ; otherwise, no satisfying control gain can be obtained. End the design procedure.
4. Illustrative Examples
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luenberger, D.G.; Arbel, A. Singular dynamical Leotief systems. Econometrica 1977, 45, 991–995. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Li, N.; Wang, Y. Observer-based sliding mode controller design for singular bio-economic system with stochastic disturbance. AIMS Math. 2023, 9, 1472–1493. [Google Scholar] [CrossRef]
- Newcomb, R.W. The semistate description of nonlinear time variable circuits. IEEE Trans. Circuits Syst. 1981, 28, 62–71. [Google Scholar] [CrossRef]
- Kumar, A.; Daoutidis, P. Feedback control of nonlinear differential-algebraic-equation systems. AIChE J. 1995, 41, 619–636. [Google Scholar] [CrossRef]
- Li, Y.; Geng, G.; Jiang, Q. A parallel contour integral method for eigenvalue analysis of power systems. IEEE Trans. Power Syst. 2017, 32, 624–632. [Google Scholar] [CrossRef]
- Luenberger, D.G. Dynamic equations in descriptor form. IEEE Trans. Autom. Control. 1977, 22, 312–321. [Google Scholar] [CrossRef]
- Lewis, F.L. A survey of linear singular systems. Circuits Syst. Signal Process. 1986, 5, 3–36. [Google Scholar] [CrossRef]
- Dai, L. Singular Control Systems. Lecture Notes in Control and Information Sciences; Springer: New York, NY, USA, 1989; Volume 118. [Google Scholar]
- Masubuchi, I.; Kamitane, Y.; Ohara, A.; Suda, N. H∞ control for descriptor systems: A matrix inequalities approach. Automatica 1997, 33, 669–673. [Google Scholar] [CrossRef]
- Xu, S.; Lam, J. Robust stability and stabilization of discrete singular systems: An equivalent characterization. IEEE Trans. Autom. Control. 2004, 49, 568–574. [Google Scholar] [CrossRef]
- Yue, D.; Lam, J. Suboptimal robust mixed H2/H∞ controller design for uncertain descriptor systems with distributed delays. Comput. Math. Appl. 2004, 47, 1041–1055. [Google Scholar] [CrossRef]
- Zhang, G.; Xia, Y.; Shi, P. New bounded real lemma for discrete-time singular systems. Automatica 2008, 44, 886–890. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, T.; Zeng, C.; Zhou, Z.; Zhang, Q. Simultaneous stabilization for uncertain descriptor systems with input saturation. Int. J. Robust Nonlinear Control. 2012, 22, 1938–1951. [Google Scholar] [CrossRef]
- Zaghdoud, R.; Salhi, S.; Ksouri, M. State derivative feedback for singular systems. IMA J. Math. Control. Inf. 2018, 35, 611–626. [Google Scholar] [CrossRef]
- Liu, R.R.; Xiong, J.; Zhang, Z. Reliable induced L∞ control for polytopic uncertain continuous-time singular systems with dynamic quantization. Appl. Math. Comput. 2023, 443, 127765. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y. Exponential Euler scheme of multi-delay Caputo–Fabrizio fractional-order differential equations. Appl. Math. Lett. 2022, 124, 107709. [Google Scholar] [CrossRef]
- Belov, A.A.; Andrianova, O.G. Robust state feedback H∞ control for discrete-time descriptor systems with norm-bounded parametric uncertainties. Int. J. Syst. Sci. 2019, 50, 1303–1312. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Ji, X.; Liu, X. Robust finite-time stabilization for uncertain discrete-time linear singular systems. IEEE Access 2020, 8, 100645–100651. [Google Scholar] [CrossRef]
- Huang, C.P. Admissibility analysis and controller design for discrete singular time-delay systems embracing uncertainties in the difference and systems’ matrices. Math. Probl. Eng. 2021, 2021, 8845558. [Google Scholar] [CrossRef]
- Chilali, M.; Gahinet, P. H∞ design with pole placement constraints: An LMI approach. IEEE Trans. Autom. Control. 1996, 41, 358–367. [Google Scholar] [CrossRef]
- Luo, J.S.; Bosch, P.P.J.; Weiland, S. New sufficient condition for robust root clustering of linear state space models with structured uncertainty. IEE Proc.-Control. Theory Appl. 1996, 143, 244–246. [Google Scholar] [CrossRef]
- Chen, S.J.; Lin, J.L. Robust D-stability of discrete and continuous time interval systems. J. Frankl. Inst. 2004, 341, 505–517. [Google Scholar] [CrossRef]
- Goncalves, E.N.; Palhares, R.M.; Takahashi, R.H.C.; Mesquita, R.C. New approach to robust D-stability analysis of linear time-invariant systems with polytope-bounded uncertainty. IEEE Trans. Autom. Control. 2006, 51, 1709–1714. [Google Scholar] [CrossRef]
- Maamri, N.; Bachelier, O.; Mehdi, D. Pole placement in a union of regions with prespecified subregion allocation. Math. Comput. Simul. 2006, 72, 38–46. [Google Scholar] [CrossRef]
- Xu, S.; Lam, J.; Zheng, L. Robust D-stability analysis for uncertain discrete singular systems with state delay. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2002, 49, 551–555. [Google Scholar]
- Chen, S.J. Robust D-stability analysis for linear discrete singular time-delay systems with structured and unstructured parameter uncertainties. IMAJ. Math. Control. Inf. 2003, 20, 153–165. [Google Scholar] [CrossRef]
- Chen, S.H.; Chou, J.H. Robust D-stability analysis for linear uncertain discrete singular systems with state delay. Appl. Math. Lett. 2006, 19, 197–205. [Google Scholar] [CrossRef]
- Chen, S.H.; Chou, J.H. Robust eigenvalue-clustering in a specified circular region for linear uncertain discrete singular systems with state delay. Appl. Math. Comput. 2007, 186, 1660–1670. [Google Scholar] [CrossRef]
- Sari, B.; Bachelier, O.; Bosche, J.; Maamri, N.; Mehdi, D. Pole placement in non connected regions for descriptor models. Math. Comput. Simul. 2011, 81, 2617–2631. [Google Scholar] [CrossRef]
- Lin, C.; Wang, J.L.; Yang, G.H.; Lam, J. Robust stabilization via state feedback for descriptor systems with uncertainties in the derivative matrix. Int. J. Control. 2000, 73, 407–415. [Google Scholar] [CrossRef]
- Lin, C.; Lam, J.; Wang, J.; Yang, G.H. Analysis on robust stability for interval descriptor systems. Syst. Control. Lett. 2001, 42, 267–278. [Google Scholar] [CrossRef]
- Lin, C.; Wang, Q.G.; Lee, T.H. Robust normalization and stabilization of uncertain descriptor systems with norm-bounded perturbations. IEEE Trans. Autom. Control. 2005, 50, 515–520. [Google Scholar]
- Huang, C.P. Analysing robust D-admissibility for discrete singular systems subjected to parametric uncertainties in the difference matrix. IMA J. Math. Control. Inf. 2011, 28, 279–289. [Google Scholar] [CrossRef]
- Huang, C.P. Specific D-admissibility and design issues for uncertain descriptor systems with parametric uncertainty in the derivative matrix. Math. Probl. Eng. 2016, 2016, 6142848. [Google Scholar] [CrossRef]
- Mao, W.J. An LMI approach to D-stability and D-stabilization of linear discrete singular systems with state delay. Appl. Math. Comput. 2011, 218, 1694–1704. [Google Scholar] [CrossRef]
- Boyd, S.; Ghaouim, L.E.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in Systems and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Gahinet, P.; Nemirovski, A.; Jaub, A.J.; Chilali, M. LMI Control Toolbox User’s Guide; The Mathworks Partner Series; The Mathworks, Inc.: Natick, MA, USA, 1995. [Google Scholar]
- Petersen, I.R. A stabilization algorithm for a class of uncertain linear systems. Syst. Control. Lett. 1987, 8, 351–357. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Q.; Yang, C.; Su, Z. Stability analysis and stabilization for discrete-time singular delay systems. J. Syst. Eng. Electron. 2011, 22, 482–487. [Google Scholar] [CrossRef]
- Saravanakumar, T.; Lee, T.H. Hybrid-driven-based resilient control for networked T-S fuzzy systems with time-delay and cyber-attacks. Int. J. Robust Nonlinear Control. 2023, 33, 7869–7891. [Google Scholar] [CrossRef]
- Tharanidharan, V.; Saravanakumar, T.; Anthoni, S.M. Robust and quantized repetitive tracking control for fractional-order fuzzy large-scale systems. Int. J. Adapt. Control. Signal Process. 2024, 38, 1496–1511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-P. Robust State Feedback Control with D-Admissible Assurance for Uncertain Discrete Singular Systems. Axioms 2024, 13, 634. https://doi.org/10.3390/axioms13090634
Huang C-P. Robust State Feedback Control with D-Admissible Assurance for Uncertain Discrete Singular Systems. Axioms. 2024; 13(9):634. https://doi.org/10.3390/axioms13090634
Chicago/Turabian StyleHuang, Chih-Peng. 2024. "Robust State Feedback Control with D-Admissible Assurance for Uncertain Discrete Singular Systems" Axioms 13, no. 9: 634. https://doi.org/10.3390/axioms13090634
APA StyleHuang, C. -P. (2024). Robust State Feedback Control with D-Admissible Assurance for Uncertain Discrete Singular Systems. Axioms, 13(9), 634. https://doi.org/10.3390/axioms13090634