On the Work of Cartan and Münzner on Isoparametric Hypersurfaces
Abstract
:1. Introduction
2. Cartan’s Work
2.1. Families of Isoparametric Hypersurfaces
2.2. Parallel Hypersurfaces
2.3. Isoparametric and Parallel Hypersurfaces
2.4. Cartan’s Formula
2.5. Isoparametric Hypersurfaces in
2.6. Isoparametric Hypersurfaces in
2.7. Isoparametric Hypersurfaces in
2.8. The Case Where All Multiplicities Are Equal
2.9. Hypersurfaces with Three Principal Curvatures
2.10. Hypersurfaces with Four Principal Curvatures
2.11. Cartan’s Questions
- For each positive integer g, does there exist an isoparametric family with g distinct principal curvatures of the same multiplicity?
- Does there exist an isoparametric family of hypersurfaces with more than three distinct principal curvatures such that the principal curvatures do not all have the same multiplicity?
- Does every isoparametric family of hypersurfaces admit a transitive group of isometries?
3. Münzner’s Work
3.1. Principal Curvatures of Parallel Hypersurfaces
3.2. Focal Submanifolds
3.2.1. Minimality of the Focal Submanifolds
3.2.2. Formula for the Principal Curvatures of M
3.3. Cartan–Münzner Polynomials
- (a)
- ,
- (b)
- .
3.4. Global Structure Theorems
- (a)
- .
- (b)
- Let , and let be the bounded unit ball bundle in . Then,
3.4.1. Münzner’s Restriction on the Number of Principal Curvatures
- (a)
- is divided into two manifolds and with boundary along M;
- (b)
- for , the manifold has the structure of a differentiable ball bundle over a compact, connected manifold of dimension .
3.4.2. Multiplicities of the Principal Curvatures
4. Classification Results
- 1.
- M is isoparametric and Hopf;
- 2.
- M is Hopf and has constant principal curvatures;
- 3.
- M is isoparametric and has constant principal curvatures;
- 4.
- M is an open subset of a homogeneous hypersurface (see Takagi’s list [8] p. 350).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cartan, E. Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. 1938, 17, 177–191. Available online: https://crossworks.holycross.edu/math_fac_scholarship/17 (accessed on 1 February 2023). [CrossRef]
- Cartan, E. Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques. Math. Z. 1939, 45, 335–367. Available online: https://crossworks.holycross.edu/math_fac_scholarship/18 (accessed on 27 February 2023). [CrossRef]
- Cartan, E. Sur quelque familles remarquables d’hypersurfaces. C.R. Congrès Math. Liège 1939, 1, 30–41. Available online: https://crossworks.holycross.edu/math_fac_scholarship/19 (accessed on 14 April 2023).
- Cartan, E. Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions. Rev. Univ. Tucuman. Ser. A 1940, 1, 5–22. Available online: https://crossworks.holycross.edu/math_fac_scholarship/20 (accessed on 19 April 2023).
- Münzner, H.-F. Isoparametrische Hyperflächen in Sphären I. Math. Ann. 1980, 251, 57–71. Available online: https://crossworks.holycross.edu/math_fac_scholarship/14 (accessed on 14 April 2021). [CrossRef]
- Münzner, H.-F. Isoparametrische Hyperflächen in Sphären II. Math. Ann. 1981, 256, 215–232. Available online: https://crossworks.holycross.edu/math_fac_scholarship/13 (accessed on 14 April 2021). [CrossRef]
- Chi, Q.-S. The isoparametric story, a heritage of Élie Cartan. In Proceedings of the International Consortium of Chinese Mathematicians, Taipei, Taiwan, 28–30 December 2018; International Press: Boston, MA, USA, 2021; pp. 197–260. [Google Scholar]
- Cecil, T.; Ryan, P. Geometry of Hypersurfaces; Springer: New York, NY, USA, 2015. [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Wiley–Interscience: New York, NY, USA, Volume 1, 1963, Volume II, 1969.
- Somigliana, C. Sulle relazione fra il principio di Huygens e l’ottica geometrica. Atti Acc. Sci. Torino 1918, 54, 974–979. [Google Scholar]
- Segre, B. Una proprietá caratteristica de tre sistemi ∞1 di superficie. Atti Acc. Sc. Torino 1924, 59, 666–671. [Google Scholar]
- Levi-Civita, T. Famiglie di superficie isoparametrische nell’ordinario spacio euclideo. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 1937, 26, 355–362. [Google Scholar]
- Segre, B. Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di demesioni. Atti. Accad. Naz Lincei Rend. Cl. Sci. Fis. Mat. Natur. 1938, 27, 203–207. [Google Scholar]
- Cecil, T.E. A characterization of metric spheres in hyperbolic space by Morse theory. Tôhoku Math. J. 1974, 26, 341–351. [Google Scholar] [CrossRef]
- Wang, Q.-M. Isoparametric hypersurfaces in complex projective spaces. In Symposium on Differential Geometry and Differential Equations (Beijing, 1980); Science Press: Beijing, China, 1982; Volume 3, pp. 1509–1523. [Google Scholar]
- Thorbergsson, G. From isoparametric submanifolds to polar foliations. São Paulo J. Math. Sci. 2022, 16, 459–472. [Google Scholar] [CrossRef]
- Xiao, L. Principal curvatures of isoparametric hypersurfaces in CPn. Trans. Am. Math. Soc. 2000, 352, 4487–4499. [Google Scholar] [CrossRef]
- Diaz-Ramos, J.C.; Dominguez-Vazquez, M.; Sanmartin-Lopez, V. Isoparametric hypersurfaces in complex hyperbolic spaces. Adv. Math. 2017, 314, 756–805. [Google Scholar] [CrossRef]
- Dominguez-Vazquez, M. Isoparametric foliations on complex projective spaces. Trans. Am. Math. Soc. 2016, 368, 1211–1249. [Google Scholar] [CrossRef]
- Dominguez-Vazquez, M.; Kollross, A. On isoparametric foliations of complex and quaternionic projective spaces. arXiv 2024, arXiv:2409.06032v1. [Google Scholar]
- Spivak, M. A Comprehensive Introduction to Differential Geometry, 3rd ed.; Publish or Perish: Houston, TX, USA, 1999; Volumes 1–5. [Google Scholar]
- Ryan, P. Hypersurfaces with parallel Ricci tensor. Osaka J. Math. 1971, 8, 251–259. [Google Scholar]
- Hurwitz, A. Über die Komposition der quadratischen Formen. Math. Ann. 1923, 88, 1–25. [Google Scholar] [CrossRef]
- Cartan, E.; Schouten, J.A. On the riemannian Geometries admitting an absolute parallelism. Proc. Akad. Amst. 1926, 29, 933–946. [Google Scholar]
- Kuiper, N. Tight embeddings and maps. Submanifolds of Geometrical Class Three in En. The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979); Springer: Berlin, Germany; New York, NY, USA, 1980; pp. 97–145. [Google Scholar]
- Freudenthal, H. Oktaven, Ausnahmegruppen und Oktavengeometrie. Geom. Dedicata 1985, 19, 7–63. [Google Scholar] [CrossRef]
- Ewert, H. Über Isoparametrische Hyperflächen in Räumen Konstanter Krümmung. Ph.D. Thesis, Universität Köln, Cologne, Germany, 1994. [Google Scholar]
- Little, J.A. Manifolds with planar geodesics. J. Differ. Geom. 1976, 11, 265–285. [Google Scholar] [CrossRef]
- Knarr, N.; Kramer, L. Projective planes and isoparametric hypersurfaces. Geom. Dedicata 1995, 58, 193–202. [Google Scholar] [CrossRef]
- Console, S.; Olmos, C. Clifford systems, algebraically constant second fundamental form and isoparametric hypersurfaces. Manuscripta Math. 1998, 97, 335–342. [Google Scholar] [CrossRef]
- Sanchez, C. Triality and the normal sections of Cartan’s isoparametric hypersurfaces. Rev. Un. Mat. Argentina 2011, 52, 73–88. [Google Scholar]
- Giunta, A.; Sanchez, C. Projective spaces in the algebraic sets of planar normal sections of homogeneous isoparametric submanifolds. Rev. Un. Mat. Argentina 2014, 55, 139–154. [Google Scholar]
- Nomizu, K. Some results in E. Cartan’s theory of isoparametric families of hypersurfaces. Bull. Amer. Math. Soc. 1973, 79, 1184–1188. [Google Scholar] [CrossRef]
- Nomizu, K. Élie Cartan’s work on isoparametric families of hypersurfaces. Proc. Sympos. Pure Math. (Amer. Math. Soc.) 1975, 27 Pt 1, 191–200. [Google Scholar]
- Ferus, D.; Karcher, H.; Münzner, H.-F. Cliffordalgebren und neue isoparametrische Hyperflächen. Math. Z. 1981, 177, 479–502, (see also an English translation by T.E. Cecil, arXiv:1112.2780v1 [mathDG] 13 Dec 2011). [Google Scholar] [CrossRef]
- Grove, K.; Halperin, S. Dupin hypersurfaces, group actions, and the double mapping cylinder. J. Differ. Geom. 1987, 26, 429–459. [Google Scholar] [CrossRef]
- Takagi, R. A class of hypersurfaces with constant principal curvatures in a sphere. J. Differ. Geom. 1976, 11, 225–233. [Google Scholar] [CrossRef]
- Ozeki, H.; Takeuchi, M. On some types of isoparametric hypersurfaces in spheres I. Tôhoku Math. J. 1975, 27, 515–559. [Google Scholar] [CrossRef]
- Ozeki, H.; Takeuchi, M. On some types of isoparametric hypersurfaces in spheres II. Tôhoku Math. J. 1976, 28, 7–55. [Google Scholar] [CrossRef]
- Takagi, R.; Takahashi, T. On the principal curvatures of homogeneous hypersurfaces in a sphere. Differ. Geom. in honor of K. Yano 1972, 469–481, Kinokuniya, Tokyo, Japan. [Google Scholar]
- Hsiang, W.-Y.; Lawson, H.B., Jr. Minimal submanifolds of low cohomogeneity. J. Differ. Geom. 1971, 5, 1–38. [Google Scholar] [CrossRef]
- Carter, S.; West, A. Isoparametric systems and transnormality. Proc. Lond. Math. Soc. 1985, 51, 520–542. [Google Scholar] [CrossRef]
- Carter, S.; West, A. Isoparametric and totally focal submanifolds. Proc. Lond. Math. Soc. 1990, 60, 609–624. [Google Scholar] [CrossRef]
- West, A. Isoparametric systems. In Geometry and Topology of Submanifolds I; World Scientific: River Edge, NJ, USA, 1989; pp. 222–230. [Google Scholar]
- Terng, C.-L. Isoparametric submanifolds and their Coxeter groups. J. Differ. Geom. 1985, 21, 79–107. [Google Scholar] [CrossRef]
- Terng, C.-L. Convexity theorem for isoparametric submanifolds. Invent. Math. 1986, 85, 487–492. [Google Scholar] [CrossRef]
- Terng, C.-L. Submanifolds with flat normal bundle. Math. Ann. 1987, 277, 95–111. [Google Scholar] [CrossRef]
- Terng, C.-L. Proper Fredholm submanifolds of Hilbert space. J. Differ. Geom. 1989, 29, 9–47. [Google Scholar] [CrossRef]
- Terng, C.-L. Recent progress in submanifold geometry. Proc. Sympos. Pure Math., Amer. Math. Soc. 1993, 54 Pt 1, 439–484. [Google Scholar]
- Hsiang, W.-Y.; Palais, R.; Terng, C.-L. The topology of isoparametric submanifolds. J. Differ. Geom. 1988, 27, 423–460. [Google Scholar] [CrossRef]
- Harle, C. Isoparametric families of submanifolds. Bol. Soc. Bras. Mat. 1982, 13, 35–48. [Google Scholar] [CrossRef]
- Strübing, W. Isoparametric submanifolds. Geom. Dedicata 1986, 20, 367–387. [Google Scholar] [CrossRef]
- Thorbergsson, G. Isoparametric foliations and their buildings. Ann. Math. 1991, 133, 429–446. [Google Scholar] [CrossRef]
- Bott, R.; Samelson, H. Applications of the theory of Morse to symmetric spaces. Amer. J. Math. 1958, 80, 964–1029, Corrections in Amer. J. Math. 1961, 83, 207–208. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kobayashi, S. Minimal imbeddings of R-spaces. J. Differ. Geom. 1968, 2, 203–215. [Google Scholar] [CrossRef]
- Thorbergsson, G. A survey on isoparametric hypersurfaces and their generalizations. In Handbook of Differential Geometry; North-Holland: Amsterdam, The Netherlands, 2000; Volume I, pp. 963–995. [Google Scholar]
- Thorbergsson, G. Dupin hypersurfaces. Bull. Lond. Math. Soc. 1983, 15, 493–498. [Google Scholar] [CrossRef]
- Grove, L.C.; Benson, C.T. Finite Reflection Groups, 2nd ed.; Graduate Texts in Mathematics 99; Springer: New York, NY, USA, 1985. [Google Scholar]
- Abresch, U. Isoparametric hypersurfaces with four or six distinct principal curvatures. Math. Ann. 1983, 264, 283–302. [Google Scholar] [CrossRef]
- Tang, Z.-Z. Isoparametric hypersurfaces with four distinct principal curvatures. Chin. Sci. Bull. 1991, 36, 1237–1240. [Google Scholar]
- Tang, Z.-Z. Multiplicities of equifocal hypersurfaces in symmetric spaces. Asian J. Math. 1998, 2, 181–214. [Google Scholar]
- Fang, F. Multiplicities of Principal Curvatures of Isoparametric Hypersurfaces; preprint; Max Planck Institut für Mathematik: Bonn, Germany, 1996. [Google Scholar]
- Fang, F. On the topology of isoparametric hypersurfaces with four distinct principal curvatures. Proc. Am. Math. Soc. 1999, 127, 259–264. [Google Scholar] [CrossRef]
- Stolz, S. Multiplicities of Dupin hypersurfaces. Invent. Math. 1999, 138, 253–279. [Google Scholar] [CrossRef]
- Fang, F. Topology of Dupin hypersurfaces with six principal curvatures. Math. Z. 1999, 231, 533–555. [Google Scholar] [CrossRef]
- Cecil, T.; Chi, Q.-S.; Jensen, G. Isoparametric hypersurfaces with four principal curvatures. Ann. Math. 2007, 166, 1–76. [Google Scholar] [CrossRef]
- Immervoll, S. On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres. Ann. Math. 2008, 168, 1011–1024. [Google Scholar] [CrossRef]
- Chi, Q.-S. Isoparametric hypersurfaces with four principal curvatures revisited. Nagoya Math. J. 2009, 193, 129–154. [Google Scholar] [CrossRef]
- Chi, Q.-S. A note on the paper “Isoparametric hypersurfaces with four principal curvatures”. Hongyou Meml. Vol. Pac. J. Appl. Math. 2011, 3, 127–134. [Google Scholar]
- Chi, Q.-S. Isoparametric hypersurfaces with four principal curvatures II. Nagoya Math. J. 2011, 204, 1–18. [Google Scholar] [CrossRef]
- Chi, Q.-S. A new look at Condition A. Osaka J. Math. 2012, 49, 133–166. [Google Scholar]
- Chi, Q.-S. Isoparametric hypersurfaces with four principal curvatures III. J. Differ. Geom. 2013, 94, 469–504. [Google Scholar] [CrossRef]
- Chi, Q.-S. Isoparametric hypersurfaces with four principal curvatures IV. J. Differ. Geom. 2020, 115, 225–301. [Google Scholar] [CrossRef]
- Dorfmeister, J.; Neher, E. Isoparametric hypersurfaces, case g = 6, m = 1. Commun. Algebra 1985, 13, 2299–2368. [Google Scholar] [CrossRef]
- Siffert, A. Classification of isoparametric hypersurfaces in spheres with (g, m) = (6, 1). Proc. Am. Math. Soc. 2016, 144, 2217–2230. [Google Scholar] [CrossRef]
- Miyaoka, R. Isoparametric hypersurfaces with (g, m) = (6, 2). Ann. Math. 2013, 177, 53–110. [Google Scholar] [CrossRef]
- Miyaoka, R. Errata on isoparametric hypersurfaces with (g, m) = (6, 2). Ann. Math. 2016, 183, 1057–1071. [Google Scholar]
- Siffert, A. A new structural approach to isoparametric hypersurfaces in spheres. Ann. Global Anal. Geom. 2017, 52, 425–456. [Google Scholar] [CrossRef]
- Cecil, T. Isoparametric and Dupin hypersurfaces. SIGMA 2008, 4, 062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecil, T.E.; Ryan, P.J. On the Work of Cartan and Münzner on Isoparametric Hypersurfaces. Axioms 2025, 14, 56. https://doi.org/10.3390/axioms14010056
Cecil TE, Ryan PJ. On the Work of Cartan and Münzner on Isoparametric Hypersurfaces. Axioms. 2025; 14(1):56. https://doi.org/10.3390/axioms14010056
Chicago/Turabian StyleCecil, Thomas E., and Patrick J. Ryan. 2025. "On the Work of Cartan and Münzner on Isoparametric Hypersurfaces" Axioms 14, no. 1: 56. https://doi.org/10.3390/axioms14010056
APA StyleCecil, T. E., & Ryan, P. J. (2025). On the Work of Cartan and Münzner on Isoparametric Hypersurfaces. Axioms, 14(1), 56. https://doi.org/10.3390/axioms14010056