Modified Heisenberg Commutation Relations, Free Schrödinger Equations, Tunnel Effect and Its Connections with the Black–Scholes Equation
Abstract
:1. Introduction
2. The Linear Deformation Case
2.1. The Linear Deformation Case and the Free Particle
2.2. The Linear Deformation Case and the Tunnel Effect
3. The Non-Linear Deformation Case
3.1. The Non-Linear Deformation Case and the Free Particle
3.2. The Non-Linear Deformation and the Tunnel Effect
4. The Linear Deformation Case
4.1. The Linear Deformation Case and the Free Particle
4.2. The Linear Deformation Case and Tunneling
5. The Non-Linear Deformation Case
5.1. The Non-Linear Deformation Case and the Free Particle
5.2. The Non-Linear Deformation Case and Tunneling
6. The Black–Scholes Model and Quantum Mechanics
6.1. GUP and the Black–Scholes Equation
6.2. Adding a Magnetic Potential
6.3. The Time-Dependent Case
6.3.1. Arbitrage Models
6.3.2. Time Varying Potentials A and U
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tawfik, A.N.; Diab, A.M. A review of the generalized uncertainty principle. Rep. Prog. Phys. 2015, 78, 126001. [Google Scholar] [CrossRef] [PubMed]
- Bruneton, J.P.; Larena, J. Quantum theory of the generalised uncertainty principle. Gen. Relativ. Gravit. 2017, 49, 56. [Google Scholar] [CrossRef]
- Pedram, P. A class of GUP solutions in deformed quantum mechanics. Int. J. Mod. Phys. D 2010, 19, 2003–2009. [Google Scholar] [CrossRef]
- Seifi, M.; Sefiedgar, A.S. The effects of the covariant generalized uncertainty principle on quantum mechanics. Can. J. Phys. 2023, 101. [Google Scholar] [CrossRef]
- Luciano, G.G.; Petruzziello, L. Generalized uncertainty principle and its implications on geometric phases in quantum mechanics. Eur. Phys. J. Plus 2021, 136, 179. [Google Scholar] [CrossRef]
- Scardigli, F. The deformation parameter of the generalized uncertainty principle. J. Phys. Conf. Ser. 2019, 1275, 012004. [Google Scholar] [CrossRef]
- Casadio, R.; Scardigli, F. Generalized Uncertainty Principle, Classical Mechanics, and General Relativity. Phys. Lett. B 2020, 807, 135558. [Google Scholar] [CrossRef]
- Reginatto, M.; Hall, M.J.W. Entangling quantum fields via a classical gravitational interaction. J. Phys. Conf. Ser. 2019, 1275, 012039. [Google Scholar] [CrossRef]
- Övgün, A. Entangled Particles Tunneling From a Schwarzschild Black Hole immersed in an Electromagnetic Universe with GUP. Int. J. Theor. Phys. 2016, 55, 2919–2927. [Google Scholar] [CrossRef]
- Park, D. Quantum entanglement with generalized uncertainty principle. Nucl. Phys. B 2022, 977, 115736. [Google Scholar] [CrossRef]
- Guo, X.; Wang, P.; Yang, H. The classical limit of minimal length uncertainty relation: Revisit with the Hamilton-Jacobi method. J. Cosmol. Astropart. Phys. 2016, 2016, 062. [Google Scholar] [CrossRef]
- Reginatto, M. Exact Uncertainty Principle and Quantization: Implications for the Gravitational Field. Braz. J. Phys. 2005, 35, 476–480. [Google Scholar] [CrossRef]
- Gonçalves, A.O.O.; Gusson, M.F.; Dilem, B.B.; Furtado, R.G.; Francisco, R.O.; Fabris, J.C.; Nogueira, J.A. An infinite square-well potential as a limiting case of a square-well potential in a minimal-length scenario. Int. J. Mod. Phys. A 2020, 35, 2050069. [Google Scholar] [CrossRef]
- Rojo, A.G.; Berman, P.R. The infinite square well potential in momentum space. Eur. J. Phys. 2020, 41, 055404. [Google Scholar] [CrossRef]
- Chung, W.S.; Hassanabadi, H. A new higher order GUP: One dimensional quantum system. Eur. Phys. J. C 2019, 79, 213. [Google Scholar] [CrossRef]
- Blado, G.; Owens, C.; Meyers, V. Quantum wells and the generalized uncertainty principle. Eur. J. Phys. 2014, 35, 065011. [Google Scholar] [CrossRef]
- Blado, G.; Prescott, T.; Jennings, J.; Ceyanes, J.; Sepulveda, R. Effects of the generalised uncertainty principle on quantum tunnelling. Eur. J. Phys. 2016, 37, 025401. [Google Scholar] [CrossRef]
- Bernardo, R.C.S.; Esguerra, J.P. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation. Ann. Phys. 2016, 373, 521–531. [Google Scholar] [CrossRef]
- Shababi, H.; Pedram, P.; Chung, W.S. On the quantum mechanical solutions with minimal length uncertainty. Int. J. Mod. Phys. A 2016, 31, 1650101. [Google Scholar] [CrossRef]
- Das, S.; Vagenas, E.C. Phenomenological implications of the generalized uncertainty principle. Can. J. Phys. 2009, 87, 3. [Google Scholar] [CrossRef]
- Contreras, M.; Ortiz, R.; González, M. Modified Heisenberg commutation relations and the infinite-square well potential: Some simple consequences. Symmetry 2024, 16, 1268. [Google Scholar] [CrossRef]
- Simmons, G.F. Differential Equations with Applications and Historical Notes, International Series in Pure and Applied Mathematics, 2nd ed.; Mc Graw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Zill, D.G.; Cullen, M.R. Differential Equations with Boundary-Value Problems; Brooks Cole: Pacific Grove, CA, USA, 2000. [Google Scholar]
- McQuarrie, D.A. Mathematical Methods for Scientist and Engineers; Viva Books: New Delhi, India, 2008. [Google Scholar]
- Schroeder, V. Quasi-metric and metric spaces. Conform. Geom. Dyn. 2006, 10, 355–360. [Google Scholar] [CrossRef]
- Haihambo, P.; Olela-Otafudu, O. On entropy on quasi-metric spaces. Topol. Appl. 2023, 332, 108512. [Google Scholar] [CrossRef]
- Gamboa, G.; Matamala, M.; Peña, J.P. Quasimetric spaces with few lines. arXiv 2024, arXiv:2405.19208v1. [Google Scholar]
- Petrov, E.; Salimov, R. On quasisymmetric mappings in semimetric spaces. Ann. Fenn. Math. 2022, 47, 723–745. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 8, 637–654. [Google Scholar] [CrossRef]
- Merton, R.C. Theory of rational option pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141–183. [Google Scholar] [CrossRef]
- Antenga, R.N.M.; Stanley, H.E. Introduction to Econophysics: Correlations and Complexity in Finance; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Dash, K.C. The Story of Econophysics; Cambridge Scholars Publishing: Cambridge, UK, 2019. [Google Scholar]
- Haven, E. A discussion on embedding the Black–Scholes option price model in a quantum physics setting. Phys. A Stat. Mech. Appl. 2002, 304, 507–524. [Google Scholar] [CrossRef]
- Haven, E. A Black–Scholes Schrödinger option price: “bit” versus “qubit”. Phys. A Stat. Mech. Appl. 2003, 324, 201–206. [Google Scholar] [CrossRef]
- Yesiltas, Ö. The Black–Scholes equation in finance: Quantum mechanical approaches. Phys. A Stat. Mech. Appl. 2023, 623, 128909. [Google Scholar] [CrossRef]
- Hicks, W. Closed Quantum Black–Scholes: Quantum Drift and the Heisenberg Equation of Motion. J. Stoch. Anal. 2020, 1, 6. [Google Scholar] [CrossRef]
- Vukovic, O. On the Interconnectedness of Schrodinger and Black–Scholes Equation. J. Appl. Math. Phys. 2015, 3, 1108–1113. [Google Scholar] [CrossRef]
- Contreras, M.; Pellicer, R.; Villena, M.; Ruiz, A. A quantum model for option pricing: When Black–Scholes meets Schrödinger and its semi-classic limit. Phys. A Stat. Mech. Appl. 2010, 329, 5447–5459. [Google Scholar] [CrossRef]
- Segal, W.; Segal, I.E. The Black–Scholes pricing formula in the quantum context. Proc. Natl. Acad. Sci. USA 1998, 95, 4072–4075. [Google Scholar] [CrossRef]
- Baaquie, B.E. Quantum Finance: Path Integrals and Hamiltonians for Option and Interest Rates; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bennati, E.; Rosa-Clot, M.; Taddei, S. A path integral approach to derivative security pricing I. Int. J. Theor. Appl. Fin. 1999, 2, 381–407. [Google Scholar] [CrossRef]
- Baaquie, B.E.; Corianò, C.; Srikant, M. Hamiltonian and potentials in derivative pricing models: Exact results and lattice simulations. Phys. A Stat. Mech. Appl. 2004, 334, 531–557. [Google Scholar] [CrossRef]
- Baaquie, B.E. A path integral to option price with stochastic volatility: Some exact results. J. Phys. EDP Sci. 1997, 7, 1733–1753. [Google Scholar]
- Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S. A path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models. Phys. Rev. E 2008, 78, 016101. [Google Scholar] [CrossRef]
- Contreras, M.; Hojman, S. Option pricing, stochastic volatility, singular dynamics and constrained path integrals. Phys. A Stat. Mech. Appl. 2014, 393, 391–403. [Google Scholar] [CrossRef]
- Contreras, M. Stochastic volatility models at ρ=±1 as a second-class constrained hamiltonian systems. Phys. A Stat. Mech. Appl. 2015, 405, 289–302. [Google Scholar] [CrossRef]
- Contreras, M.; Bustamante, M. Multi-asset Black–Scholes model as a variable second-class constrained dynamical system. Phys. A Stat. Mech. Appl. 2016, 457, 540–572. [Google Scholar]
- Contreras, M.; Montalva, R.; Pellicer, R.; Villena, M. Dynamic option pricing with endogenous stochastic arbitrage. Phys. A Stat. Mech. Appl. 2010, 389, 3552–3564. [Google Scholar] [CrossRef]
- Ilinski, K. Virtual arbitrage pricing theory. arXiv 1999. [Google Scholar] [CrossRef]
- Ilinski, K. Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Ilinski, K.; Stepanenko, A. Derivative pricing with virtual arbitrage. arXiv 1999. [Google Scholar] [CrossRef]
- Panayides, S. Arbitrage opportunities and their implications to derivative hedging. Phys. A Stat. Mech. Appl. 2006, 361, 289–296. [Google Scholar] [CrossRef]
- Panayides, S.; Fedotov, S. Stochastic arbitrage return and its implication for option pricing. Phys. A Stat. Mech. Appl. 2005, 345, 207–217. [Google Scholar] [CrossRef]
- Sircar, K.R.; Papanicolaou, G.C. Stochastic volatility, smiles and asymptotics. Appl. Math. Financ. 1999, 6, 107–145. [Google Scholar] [CrossRef]
- Contreras, M.; Ortiz, R. Three little arbitrage theorems. Front. Appl. Math. Stat. 2023, 9, 1138663. [Google Scholar] [CrossRef]
- Contreras, M.; Pellicer, R.; Santiagos, D.; Villena, M. Calibration and Simulation of Arbitrage Effects in a Non-Equilibrium Quantum Black–Scholes Model by Using Semi-Classical Methods. J. Math. Financ. 2016, 6, 541–561. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras González, M.; Ortiz Herrera, R.; González Suárez, J. Modified Heisenberg Commutation Relations, Free Schrödinger Equations, Tunnel Effect and Its Connections with the Black–Scholes Equation. Axioms 2025, 14, 60. https://doi.org/10.3390/axioms14010060
Contreras González M, Ortiz Herrera R, González Suárez J. Modified Heisenberg Commutation Relations, Free Schrödinger Equations, Tunnel Effect and Its Connections with the Black–Scholes Equation. Axioms. 2025; 14(1):60. https://doi.org/10.3390/axioms14010060
Chicago/Turabian StyleContreras González, Mauricio, Roberto Ortiz Herrera, and José González Suárez. 2025. "Modified Heisenberg Commutation Relations, Free Schrödinger Equations, Tunnel Effect and Its Connections with the Black–Scholes Equation" Axioms 14, no. 1: 60. https://doi.org/10.3390/axioms14010060
APA StyleContreras González, M., Ortiz Herrera, R., & González Suárez, J. (2025). Modified Heisenberg Commutation Relations, Free Schrödinger Equations, Tunnel Effect and Its Connections with the Black–Scholes Equation. Axioms, 14(1), 60. https://doi.org/10.3390/axioms14010060