Four-Step T-Stable Generalized Iterative Technique with Improved Convergence and Various Applications
Abstract
:1. Introduction
Iterative Techniques
2. Rate of Convergence
3. Convergence Results for Garcia-Falset Mapping
4. Stability
5. Application
5.1. Heat Equation
5.2. Delay Differential Equations
- ,
- There exists such that:
- .
5.3. Implicit Neural Network
- FormulatetheProblem: Represent the task as a fixed-point equation.
- Initialization: Define an initial guess for x and determine the conditions for convergence.
- BackpropagationthroughIterations: Implement the backpropagation process, considering the differentiation of the fixed-point iteration with respect to the parameters using implicit differentiation.
- ConvergenceandStabilityAnalysis: Analyze the convergence behavior and stability of the iterative process, ensuring that the method reliably finds a solution within the desired tolerance.
- Maximum input (max) = 3;
- Minimum input (min) = 0;
- Input value = 3.
- Input ;
- Weights: ;
- Bias: ;
- ;
- Learning rate .
- x: input;
- : output at time step t;
- W: weights collected in the network;
- b: biases;
- : usual length of vector v.
Weights | Biases |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Alagoz, O.; Birol, G.; Sezgin, G. Numerical reckoning fixed points for Barinde mappings via a faster iteration process. Facta Univ. Ser. Math. Inform. 2008, 33, 295–305. [Google Scholar]
- Ullah, K.; Ahmad, J.; Arshad, M.; Ma, Z. Approximating fixed points using a faster iterative method and application to split feasibility problems. Computation 2021, 9, 90. [Google Scholar] [CrossRef]
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob. 2004, 20, 103–120. [Google Scholar] [CrossRef]
- López, G.; Márquez, V.M.; Xu, H.K. Halpern iteration for Nonexpansive mappings. Contemp. Math. 2010, 513, 211–231. [Google Scholar]
- Kirk, W.A. A fixed point Theorem for mappings which do not increase distances. Amer. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef]
- Göhde, D. Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Goebel, K. An elementary proof of the fixed-point Theorem of Browder and Kirk. Michigan Math. J. 1969, 16, 381–383. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point Theorems and convergence Theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef]
- Garcia-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375, 185–195. [Google Scholar] [CrossRef]
- Bagherboum, M. Approximating fixed points of mappings satisfying condition (E) in Busemann space. Numer. Algorithms 2016, 71, 25–39. [Google Scholar] [CrossRef]
- Kitkuan, D.; Muangchoo, K.; Padcharoen, A.; Pakkaranang, N.; Kumam, P. A viscosity forward-backward splitting approximation method in Banach spaces and its application to convex optimization and image restoration problems. Comput. Math. Methods 2020, 2, e1098. [Google Scholar] [CrossRef]
- Kumam, W.; Pakkaranang, N.; Kumam, P.; Cholamjiak, P. Convergence analysis of modified Picard’s hybrid iterative algorithms for total asymptotically nonexpansive mappings in Hadamard spaces. Int. J. Comput. Math. 2020, 97, 157–188. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Pakkaranang, N.; Kumam, P.; Thounthong, P.; Cholamjiak, P. Convergence Theorems for generalized viscosity explicit methods for nonexpansive mappings in Banach spaces and some applications. Mathematics 2019, 7, 161. [Google Scholar] [CrossRef]
- Thounthong, P.; Pakkaranang, N.; Cho, Y.J.; Kumam, W.; Kumam, P. The numerical reckoning of modified proximal point methods for minimization problems in non-positive curvature metric spaces. J. Nonlinear Sci. Appl. 2020, 97, 245–262. [Google Scholar] [CrossRef]
- Picard, E. Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives. J. Math. Pures Appl. 1890, 6, 145–210. [Google Scholar]
- Mann, W.R. Mean value methods in iteration. Proc. Amer. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Amer. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Mate. Vesnik 2014, 66, 223–234. [Google Scholar]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat 2015, 30, 2711–2720. [Google Scholar] [CrossRef]
- Rahimi, A.; Rezaei, A.; Daraby, B.; Ghasemi, M. A new faster iteration process to fixed points of generalized alpha-nonexpansive mappings in Banach spaces. Int. J. Nonlinear Anal. Appl. 2024, 15, 1–10. [Google Scholar]
- Okeke, G.A.; Udo, A.V.; Alqahtani, R.T.; Kaplan, M.; Ahmed, W.E. A novel iterative scheme for solving delay differential equations and third order boundary value problems via Green’s functions. AIMS Math. 2024, 9, 6468–6498. [Google Scholar] [CrossRef]
- Chen, T.Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural ordinary differential equations. In Proceedings of the Advances in Neural Information Processing Systems 31 (NeurIPS 2018), Montréal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Ghaoui, E.; Gu, F.; Travacca, B.; Askari, A.; Tsai, A. Implicit deep learning. Siam J. Math. Data Sci. 2021, 3, 930–950. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. Deep equilibrium models. arXiv 2019, arXiv:1909.01377. [Google Scholar]
- Kawaguchi, K. On the theory of implicit deep learning: Global convergence with implicit layers. arXiv 2021, arXiv:2102.07346. [Google Scholar]
- Jafarpour, S.; Davydov, A.; Proskurnikov, A.V.; Bullo, F. Robust implicit networks via non-Euclidean contractions. arXiv 2022, arXiv:2106.03194. [Google Scholar]
- Sahu, D.R. Applications of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 2011, 12, 187–204. [Google Scholar]
- Gopi, R.; Pragadeeswarar, V.; De La Sen, M. Thakur’s Iterative Scheme for Approximating Common Fixed Points to a Pair of Relatively Nonexpansive Mappings. J. Math. 2022, 2022, 55377686. [Google Scholar] [CrossRef]
- Harder, A.M.; Hicks, T.L. A Stable Iteration Procedure for Nonexpansive Mappings. Math. Japon. 1988, 33, 687–692. [Google Scholar]
- Heammerlin, G.; Hoffmann, K.H. Numerical Mathematics; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Coman, G.; Rus, I.; Pavel, G.; Rus, I. Introduction in the Operational Equations Theory; Dacia: Cluj-Napoca, Romania, 1976. [Google Scholar]
- Weng, X. Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Am. Math. Soc. 1991, 113, 727–731. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Pitea, A. On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis. J. Nonlinear Sci. Appl. 2016, 9, 2553–2562. [Google Scholar] [CrossRef]
- Ali, F.; Ali, J. Convergence, stability and data dependence of a new iterative algorithm with an application. Comput. Appl. Math. 2020, 39, 267. [Google Scholar] [CrossRef]
- Okeke, G.A.; Abbas, M. A solution of delay differential equations via Picard, Krasnoselskii hybrid iterative process. Arab. J. Math. 2017, 6, 21–29. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Sahu, D. Fixed Point Theory for Lipschitzian-Type Mappings with Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wang, X. Fixed-Point Iterative Method with Eighth-Order Constructed by Undetermined Parameter Technique for Solving Nonlinear Systems. Symmetry 2021, 13, 863. [Google Scholar] [CrossRef]
No. of Iterations | Picard | Thakur | Asghar Rahimi | New Iteration |
---|---|---|---|---|
1 | 30 | 30 | 30 | 30 |
2 | 27.3861278753 | 25.4605027258 | 23.2381722116 | 14.6168424629 |
3 | 24.8129650132 | 21.0691659384 | 16.8793944946 | 5.5974190240 |
4 | 22.2891328380 | 16.8924163440 | 11.2697340648 | 5.0032637416 |
5 | 19.8260093221 | 13.0431036573 | 7.1650814763 | 5.0000149868 |
6 | 17.4388815498 | 9.7163929865 | 5.3849641099 | 5.0000000688 |
7 | 15.1486402165 | 7.2125863864 | 5.0454052746 | 5.0000000003 |
8 | 12.9842003647 | 5.7772680541 | 5.0049230360 | 5.0000000000 |
9 | 10.9856386670 | 5.2154250367 | 5.0005284002 | 5.0000000000 |
10 | 9.2070855823 | 5.0535678237 | 5.0000566520 | 5.0000000000 |
11 | 7.7154333272 | 5.0128902394 | 5.0000060732 | 5.0000000000 |
12 | 6.5753563754 | 5.0030760332 | 5.0000006510 | 5.0000000000 |
13 | 5.8123294135 | 5.0007325602 | 5.0000000698 | 5.0000000000 |
14 | 5.3767273252 | 5.0001743757 | 5.0000000075 | 5.0000000000 |
15 | 5.1622507474 | 5.0000415029 | 5.0000000008 | 5.0000000000 |
16 | 5.0670828190 | 5.0000098778 | 5.0000000001 | 5.0000000000 |
17 | 5.0272091045 | 5.0000023509 | 5.0000000000 | 5.0000000000 |
18 | 5.0109456945 | 5.0000005595 | 5.0000000000 | 5.0000000000 |
19 | 5.0043883329 | 5.0000001332 | 5.0000000000 | 5.0000000000 |
20 | 5.0017569502 | 5.0000000317 | 5.0000000000 | 5.0000000000 |
21 | 5.0007030393 | 5.0000000075 | 5.0000000000 | 5.0000000000 |
No. of Iterations | Akanimo | Thakur | Asghar Rahimi | New Iteration |
---|---|---|---|---|
1 | 0.1 | 0.1 | 0.1 | 0.1 |
2 | −0.0644720187 | −0.0869402962 | −0.1630096033 | −0.3803139327 |
3 | −0.1922289988 | −0.2264595551 | −0.3322517610 | −0.5494920044 |
4 | −0.2915201418 | −0.3306827011 | −0.4414827416 | −0.6100326607 |
5 | −0.3687681179 | −0.4086549542 | −0.5122262545 | −0.6318737760 |
6 | −0.4289375510 | −0.4670790018 | −0.5581749961 | −0.6397788231 |
7 | −0.4758578291 | −0.5109175395 | −0.5880826744 | −0.6426433848 |
8 | −0.5124838838 | −0.5438511695 | −0.6075783795 | −0.6436818788 |
9 | −0.5410994344 | −0.5686166193 | −0.6202998349 | −0.6440584262 |
10 | −0.5634729424 | −0.5872541993 | −0.6286065855 | −0.6441949665 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
48 | −0.6442665057 | −0.6442716845 | −0.6442726463 | −0.6442726473 |
49 | −0.6442678310 | −0.6442719208 | −0.6442726467 | −0.6442726473 |
50 | −0.6442688702 | −0.6442720992 | −0.6442726469 | −0.6442726473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiran, Q.; Begum, S. Four-Step T-Stable Generalized Iterative Technique with Improved Convergence and Various Applications. Axioms 2025, 14, 71. https://doi.org/10.3390/axioms14010071
Kiran Q, Begum S. Four-Step T-Stable Generalized Iterative Technique with Improved Convergence and Various Applications. Axioms. 2025; 14(1):71. https://doi.org/10.3390/axioms14010071
Chicago/Turabian StyleKiran, Quanita, and Shaista Begum. 2025. "Four-Step T-Stable Generalized Iterative Technique with Improved Convergence and Various Applications" Axioms 14, no. 1: 71. https://doi.org/10.3390/axioms14010071
APA StyleKiran, Q., & Begum, S. (2025). Four-Step T-Stable Generalized Iterative Technique with Improved Convergence and Various Applications. Axioms, 14(1), 71. https://doi.org/10.3390/axioms14010071