Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness of Mild Solutions
4. Attractivity of Mild Solutions
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sene, N. Fractional diffusion equation with new fractional operator. Alex. Eng. J. 2020, 59, 2921–2926. [Google Scholar] [CrossRef]
- Liao, X.; Feng, M. Time-fractional diffusion equation-based image denoising model. Nonlinear Dyn. 2021, 103, 1999–2017. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 406–481. [Google Scholar] [CrossRef]
- Jajarmi, A.; Baleanu, D.; Sajjadi, S.S.; Nieto, J.J. Analysis and some applications of a regularized ψ–Hilfer fractional derivative. J. Comput. Appl. Math. 2022, 415, 114476. [Google Scholar] [CrossRef]
- Sousa, J.V.d.C.; De Oliveira, E.C.d. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Zhu, T. Global attractivity for fractional differential equations of Riemann-Liouville type. Fract. Calc. Appl. Anal. 2023, 26, 2264–2280. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, K. Global existence and attractivity for Riemann-Liouville fractional semilinear evolution equations involving weakly singular integral inequalities. J. Inequalities Appl. 2024, 2024, 64. [Google Scholar] [CrossRef]
- Sousa, J.V.d.C.; Benchohra, M.; N’Guérékata, G.M. Attractivity for differential equations of fractional order and ψ-Hilfer type. Fract. Calc. Appl. Anal. 2020, 23, 1188–1207. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser.-S. 2020, 13, 709–722. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983. [Google Scholar]
- Zhou, Y.; Jiao, F. Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 2010, 11, 4465–4475. [Google Scholar] [CrossRef]
- Mainardi, F.; Paradisi, P.; Gorenflo, R. Probability distributions generated by fractional diffusion equations. In Econophysics: An Emerging Science; Kertesz, J., Kondor, I., Eds.; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Fahad, H.M.; Rehman, M.U.; Fernandez, A. On Laplace transforms with respect to functions and their applications to fractional differential equations. Math. Methods Appl. Sci. 2023, 46, 8304–8323. [Google Scholar] [CrossRef]
- Guo, W. A generalization and application of Ascoli-Arzela theorem. J. Syst. Sci. Math. Sci. 2002, 22, 115–122. [Google Scholar]
- Isac, G. Complementarity Problems and Variational Inequalities; Springer: New York, NY, USA, 2006. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Zhou, Y. Attractivity for fractional differential equations in Banach space. Appl. Math. Lett. 2018, 75, 1–6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Jin, Y.; He, W.; Mu, J. Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives. Axioms 2025, 14, 79. https://doi.org/10.3390/axioms14020079
Wang L, Jin Y, He W, Mu J. Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives. Axioms. 2025; 14(2):79. https://doi.org/10.3390/axioms14020079
Chicago/Turabian StyleWang, Luyao, Yuhang Jin, Wenchang He, and Jia Mu. 2025. "Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives" Axioms 14, no. 2: 79. https://doi.org/10.3390/axioms14020079
APA StyleWang, L., Jin, Y., He, W., & Mu, J. (2025). Existence and Attractivity of Mild Solutions for Fractional Diffusion Equations Involving the Regularized ψ-Hilfer Fractional Derivatives. Axioms, 14(2), 79. https://doi.org/10.3390/axioms14020079