Rogue Waves in the Nonlinear Schrödinger, Kadomtsev–Petviashvili, Lakshmanan–Porsezian–Daniel and Hirota Equations
Abstract
:1. Introduction
2. Rogue Waves in the NLS Equation
2.1. New Approaches to Solving the NLS Equation
2.1.1. The Modified NLS Equation
- The Wronskian representation
- The IST method (in the case of this modified NLS equation)
2.1.2. The Inverse Scattering Method
2.1.3. The Darboux Dressing Approach
2.1.4. The Hirota Bilinear Approach
2.2. The Algebro-Geometric Approach and the Multi-Parametric Deformations of the Peregrine Breather Solutions to the NLS Equation
2.2.1. The Choice of Parameters
2.2.2. The New Results
2.2.3. Expression of the Solutions to the NLS Equation in Terms of Riemann Theta Functions
2.2.4. Representation of the Solutions to the NLS Equation in Terms of Fredholm Determinants
2.2.5. Wronskian Representation of the Solutions to the NLS Equation
2.2.6. Quasi-Rational Solutions to the NLS Equation
2.2.7. Degenerated Representation of the Quasi-Rational Solutions to the NLS Solutions
2.2.8. Another Representation of the Solutions to the NLS Equation
2.2.9. The Breather and Its Maximum Modulus Equal to
2.2.10. Structure of the Solutions to the NLS Equation
- N and D are polynomials of degrees in x and t.
2.3. Study of Solutions of Order
- For or , we obtain rings with 5 or 10 peaks;
- For or , we obtain rings with 7 or 14 peaks with in the center ;
- For or , we obtain five rings with 9, 18, 18, 19, 18, peaks with, in the center, the Peregrine ;
- For or , we obtain seven rings of 11, 11, 22, 11, 11, 11, 11 peaks with in the center ;
- For or , we have seven rings with 13 peaks on each of them, without a peak in the center;
- For or , we obtain six rings with 15 peaks on each of them and in the center;
- For or , we obtain five rings with 17 peaks on each of them and, in the center, the Peregrine breather of order 3;
- For or , we obtain four rings with 19 peaks and, in the center, the Peregrine breather of order 5. For or , we have three rings with 21 peaks and, in the center, the Peregrine breather of order 7;
- For or , we obtain only two rings with 23 peaks and, in the center, the Peregrine breather of order 9;
- For or , we obtain only one ring with 25 peaks and, in the center, the Peregrine breather of order 11.
3. Rogue Waves in the Kadomtsev–Petviashvili (KPI) Equation
3.1. The (KPI) Equation
3.2. Recent Results
3.2.1. The Darboux Transformation
3.2.2. The Hirota Bilinear Method
3.2.3. The Algebro-Geometric Approach
3.3. The Three Representations of the Solutions to the KPI Equation
3.3.1. Fredholm Determinant Representation of the Solutions to the KPI Equation
3.3.2. Wronskian Representation of the Solutions to the KPI Equation
3.3.3. Rational Solutions of Order N to the KPI Equation Depending on Parameters
3.4. Another Representation of the Solutions to the KPI Equation
3.4.1. Structure of Rational Solutions to the KPI Equation
3.4.2. The Maximum Modulus of the Solution of Order N to the KPI Equation
3.4.3. Another Approach to Obtaining Solution to the KPI Equation
4. The Lakshmanan–Porsezian–Daniel Equation and Rogue Waves
4.1. The Lakshmanan–Porsezian–Daniel Equation
4.2. Quasi-Rational Solutions to the Lakshmanan–Porsezian–Daniel Equation
5. The Hirota Equation and Rogue Waves
5.1. The Hirota Equation
5.2. Quasi-Rational Solutions to the Hirota Equation
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Draper, L. Freak ocean waves. Oceanus 1964, 10, 13–15. [Google Scholar] [CrossRef]
- Solli, D.R.; Ropers, C.; Koonath, P.; Jalali, B. Optical rogue waves. Nature 2007, 450, 1054–1057. [Google Scholar] [CrossRef]
- Bludov, Y.V.; Konotop, V.V.; Akhmediev, N. Matter rogue waves. Phys. Rev. A 2009, 80, 033610. [Google Scholar] [CrossRef]
- Stenflo, L.; Marklund, M. Rogue waves in the atmosphere. J. Plasma Phys. 2010, 76, 293–295. [Google Scholar] [CrossRef]
- Yan, Z.Y. Financial rogue waves. Commun. Theor. Phys. 2010, 54, 947. [Google Scholar] [CrossRef]
- Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968, 9, 86–94. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media. Sov. Phys. JETP 1972, 34, 62. [Google Scholar]
- Kuznetsov, E. Solitons in a parametrically unstable plasma. Sov. Phys. Dokl. 1977, 22, 507–508. [Google Scholar]
- Ma, Y.C. The perturbed plane wave solutions of the cubic nonlinear Schrödinger equation. Dockl. Akad. Nauk. 1979, 60, 43–58. [Google Scholar]
- Peregrine, D. Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. B 1983, 25, 16–43. [Google Scholar] [CrossRef]
- Akhmediev, N.; Eleonskii, V.; Kulagin, N.E. Exact first order solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 1987, 72, 809–818. [Google Scholar] [CrossRef]
- Akhmediev, N.; Eleonskii, V.M.; Kulagin, N.E. Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions. Zh. Eksp. Teor. Fiz. 1985, 89, 1542–1551. [Google Scholar]
- Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J.M. The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 2010, 6, 790–795. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Dias, F.; Kibler, B.; Akhmediev, N. Modulation instability, Akhmediev breathers and CW supercontinuum generation. Opt. Express 2009, 17, 21497. [Google Scholar] [CrossRef] [PubMed]
- Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J.M. Rogues waves and rational solutions of nonlinear Schrödinger equation. Phys. Rev. E 2009, 80, 026601. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J.M. Extreme waves that appear from nowhehere: On the nature of rogue waves. Phys. Lett. A 2009, 373, 2137–2145. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A. First-order exact solutions of the nonlinear Schrödinger equation in the normal-dispersion regime. Phys. Rev. A 2009, 47, 3213–3221. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A.; Taki, M. Waves that appear from nowhere and disappear without a trace. Phys. Rev. A 2009, 373, 675–678. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A.; Soto-Crespo, J.M. Pulsating, creeping and erupting solitons in dissipative systems. Phys. Rev. Lett. 2000, 85, 2937–2940. [Google Scholar]
- Ankiewicz, A.; Clarkson, P.; Akhmediev, N. Rogue waves, rational solutions, the patterns of their zeros and integral relations. J. Phys. A Math. Theor. 2010, 43, 122002. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A.; Dudley, J.M.; Soto-Crespo, J.M. Rogue wave early warning through spectral measurements. Phys. Lett. A 2010, 82, 1–7. [Google Scholar] [CrossRef]
- Akhmediev, N.; Dudley, J.M.; Solly, D.R.; Turitsin, S.K. Recent progress in investigating optical rogue waves. J. Opt. 2013, 15, 060201. [Google Scholar] [CrossRef]
- Akhmediev, N.; Soto-Crespo, J.M.; Brand, H.R. Dissipative solitons with energy and matter flows: Fundamental building blocks for the world of living organisms. Phys. Lett. A 2013, 377, 968–974. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Kedziora, D.J.; Akhmediev, N. Rogue wave triplets. Phys. Lett. A 2011, 375, 2782–2785. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Chowdhury, A.; Devine, N.; Akhmediev, N. Rogue waves of the nonlinear Schrödinger equation with even symetric perturbations. J. Opt. 2013, 15, 064007. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Devine, N.; Ünal, M.; Chowdhury, A.; Akhmediev, N. Rogue waves and other solutions of single and coupled Ablowitz-Ladik and nonlinear Schrödinger equations. J. Opt. 2013, 15, 064008. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Soto-Crespo, J.M.; Chowdhury, A.; Akhmediev, N. Rogue waves in optical fibers in presence of third-order dispersion, self-steepening, and self-frequency shift. J. Opt. Soc. Am. B 2013, 30, 87–94. [Google Scholar] [CrossRef]
- Kedziora, D.J.; Ankiewicz, A.; Akhmediev, N. Classifying the hierarchy of the nonlinear Schrödinger equation rogue waves solutions. Phys. Rev. E 2013, 88, 013207. [Google Scholar] [CrossRef] [PubMed]
- Eleonskii, V.; Krichever, I.; Kulagin, N. Rational multisoliton solutions of nonlinear Schrödinger equation. Doklady Akademii Nauk 1986, 287, 606–610. [Google Scholar]
- Dubrovin, B.A.; Matveev, V.B.; Novikov, S.P. Integrable Systems. Available online: https://dokumen.pub/integrable-systems-1nbsped-2022932445-9781786308276.html (accessed on 16 January 2025).
- Matveev, V.B. 30 years of finite gap integration theory. Proc. Roy. Soc. A 2008, 306, 837–875. [Google Scholar] [CrossRef]
- Bellokolos, E.D.; Bobenko, A.I.; Enol’skii, V.Z.; Its, A.R.; Matveev, V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations; Series in Nonlinear Dynamics; Springer: Berlin, Germany, 1996. [Google Scholar]
- Ginzburg, F.; Holden, H. Soliton Equations and Their Algebro-Geometric Solutions; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ginzburg, F.; Holden, H.; Michor, J.; Teschl, G. Soliton Equations and Their Algebro-Geometric Solutions; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Babelon, O.; Bernard, D.; Talon, M. Introduction to Classical Integrable Systems; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Its, A.R.; Rybin, A.V.; Salle, M.A. Exact integration of nonlinear Schrödinger equation. Theor. Math. Phys. 1988, 74, 29–45. [Google Scholar] [CrossRef]
- Chabchoub, A.; Hoffmann, N.P.; Akhmediev, N. Rogue wave observation in a water wave tank. Phys. Rev. Lett. 2011, 106, 204502. [Google Scholar] [CrossRef]
- Dubard, P.; Gaillard, P.; Klein, C.; Matveev, V.B. On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spe. Top. 2010, 185, 247–258. [Google Scholar] [CrossRef]
- Dubard, P.; Matveev, V.B. Multi-rogue waves solutions: From the NLS to the KP-I equation. Nonlinearity 2013, 26, 93–125. [Google Scholar] [CrossRef]
- Bilman, D.; Miller, P.D. A robust inverse scattering transform for the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 2019, 72, 1722–1805. [Google Scholar] [CrossRef]
- Biondini, G.; Kovacic, G. Inverse scattering transform for the focusing nonlinear Schrodinger equation with nonzero boundary conditions. J. Math. Phys. 2014, 25, 031506. [Google Scholar] [CrossRef]
- Aktosun, T.; Demontis, F.; Van der Mee, C. Exact solutions to the focusing NLS equation. Inverse Probl. 2007, 23, 2171–2195. [Google Scholar] [CrossRef]
- Prinari, B.; Vitale, F. Inverse scattering transform for the focusing nonlinear Schrödinger equation with a one-sided non-zero boundary condition. Contemp. Math. 2015, 651, 157–194. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Series in Nonlinear Dynamics; Springer: Berlin, Germany, 1991. [Google Scholar]
- Matveev, V.B. Darboux transformations, covariance theorems and integrable systems. Transl. Am. Math.-Soc.-Ser. 2000, 201, 179–209. [Google Scholar]
- Aktosun, T.; Van der Mee, C. Darboux transformation for the NLS equation. Nonlinear Math. Phys. 2010, 1212, 254–263. [Google Scholar]
- Guo, B.; Ling, L.; Liu, Q. Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 2012, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.Y.; Yang, Y.; Yan, Z. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrodinger equation. Phys. Rev. E 2015, 92, 012917. [Google Scholar] [CrossRef]
- Ohta, Y.; Yang, J. General high order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 2012, 468, 1716–1740. [Google Scholar] [CrossRef]
- Hirota, R. Exact N-soliton solutions of the wave equation of long waves in shallow water ad in nonlinear lattices. J. Math. Phys. 1973, 14, 810–814. [Google Scholar] [CrossRef]
- Gaillard, P. Differential relations for the solutions to the NLS equation and their different representations. Commun. Adv. Math. Sci. 2019, 2, 1–4. [Google Scholar] [CrossRef]
- Gaillard, P. Families of quasi-rational solutions of the NLS equation and multi-rogue waves. J. Phys. A Meth. Theor. 2011, 44, 435204. [Google Scholar] [CrossRef]
- Gaillard, P. Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves. J. Math. Phys. 2013, 54, 013504. [Google Scholar] [CrossRef]
- Gaillard, P. Wronskian representation of solutions of the NLS equation and higher Peregrine breathers. J. Math. Sci. Adv. Appl. 2012, 13, 71–153. [Google Scholar]
- Gaillard, P. Deformations of third order Peregrine breather solutions of the NLS equation with four parameters. Phys. Rev. E 2013, 88, 042903. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, P. Other 2N-2 parameters solutions to the NLS equation and 2N+1 highest amplitude of the modulus of the N-th order AP breather. J. Phys. A Math. Theor. 2015, 48, 145203. [Google Scholar] [CrossRef]
- Gaillard, P.; Gastineau, M. Families of deformations of the thirteenth Peregrine breather solutions to the NLS equation depending on twenty four parameters. J. Bas. Appl. Res. Int. 2017, 21, 130–139. [Google Scholar]
- Dryuma, V.S. On analytical solutions of the two-dimensional Korteweg-de Vries equation. Pisma Zh. Eksp. Teor. Fiz. 1973, 19, 219–225. [Google Scholar]
- Manakov, S.V.; Zakharov, V.E.; Bordag, L.A.; Its, A.R.; Matveev, V.B. Two dimensional solitons of the KP equation and their interaction. Phys. Lett. 1977, 63A, 205–206. [Google Scholar] [CrossRef]
- Krichever, I. Rational solutions of the Kadomtcev-Petviashvili equation and integrable systems of n particules on a line. Funct. Anal. Appl. 1978, 12, 76–78. [Google Scholar] [CrossRef]
- Krichever, I.; Novikov, S. Holomorphic bundles over riemann surfaces and the Kadomtsev Petviashvili equation. Funct. Anal. Its Appl. 1978, 12, 41–52. [Google Scholar] [CrossRef]
- Dubrovin, B.A. Theta functions and non-linear equations. Russ. Math. Surv. 1981, 36, 11–92. [Google Scholar] [CrossRef]
- Krichever, I. Elliptic solutions of the KP equation and integrable systems of particles. Funkt. Anal. E Pril. 1980, 14, 45–54. [Google Scholar]
- Matveev, V.B. Darboux transformation and explicit solutions of the Kadomtsev Petviashvili equation depending on functional parameters. Lett. Math. Phys. 1979, 3, 213–216. [Google Scholar] [CrossRef]
- Freeman, N.C.; Nimmo, J.J.C. Rational solutions of the KdV equation in Wronskian form. Phys. Lett. 1983, 96 A, 443–446. [Google Scholar]
- Freeman, N.C.; Nimmo, J.J.C. The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form. J. Phys. A Math. Gen. 1984, 17, 1415–1424. [Google Scholar]
- Matveev, V.B.; Salle, M.A. New families of the explicit solutions of the Kadomtsev Petviashvili equation and their application to Johnson equation. In Some Topics on Inverse Problems; World Scientific: Singapore, 1987; pp. 304–315. [Google Scholar]
- Pelinovsky, D.E.; Stepanyants, Y.A. New multisolitons of the Kadomtsev Petviashvili equation. Sov. J. Exp. Theor. Phys. Lett. 1993, 57, 24–28. [Google Scholar]
- Pelinovsky, D.E. Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles I: New form of a general rational solution. J. Math. Phys. 1994, 35, 5820–5830. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Villarroel, J. Solutions to the time dependent Schrödinger and the Kadomtsev-Petviashvili equations. Phys. Rev. Lett. 1997, 78, 570–573. [Google Scholar] [CrossRef]
- Villarroel, J.; Ablowitz, M.J. On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev Petviashvili I equation. Commun. Math. Phys. 1999, 207, 1–42. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Chakravarty, S.; Trubatch, A.D.; Villaroel, J. A novel class of solutions of the non-stationary Schrödinger and the KP equations. Phys. Let. A 2000, 267, 132–146. [Google Scholar] [CrossRef]
- Biondini, G.; Kodama, Y. On a family of solutions of the Kadomtsev Petviashvili equation which also satisfy the Toda lattice hierarchy. J. Phys. A Math. Gen. 2003, 36, 10519–10536. [Google Scholar] [CrossRef]
- Kodama, Y. Young diagrams and N solitons solutions to the KP equation. J. Phys. A Math. Gen. 2004, 37, 11169–11190. [Google Scholar] [CrossRef]
- Biondini, G. Line soliton interactions of the Kadomtsev-Petviashvili equation. Phys. Rev. Lett. 2007, 99, 064103. [Google Scholar] [CrossRef]
- Xu, T.; Sun, F.W.; Zhang, Y.; Li, J. Multi-component Wronskian solution to the Kadomtsev Petviasvili equation. Comp. Math. Math. Phys. B 2014, 54, 97–113. [Google Scholar] [CrossRef]
- Yao, Z.Z.; Zhang, C.Y.; Zhu, H.W.; Meng, X.H.; Lu, X.; Shaw, W.R.; Tian, B. Wronskian and Grammian Determinant Solutions for a Variable-Coefficient Kadomtsev Petviashvili Equation. Commun. Theor. Phys. 2008, 49, 1125–1128. [Google Scholar]
- Fu, H.; Sing, Y.; Xu, J. Wronskian and grammian solutions for generalized (n + 1)-dimensional KP equation with variable coefficients. Appl. Math. 2012, 3, 154–157. [Google Scholar] [CrossRef]
- Rao, J.; Chow, K.W.; Mihalache, D.; He, J. Completely resonant collision of lumps and line solitons in the Kadomtsev–Petviashvili I equation. Stud. Appl. Math. 2021, 147, 1007–1035. [Google Scholar] [CrossRef]
- Yang, B.; Yang, J. Pattern transformation in higher-order lumps of the Kadomtsev-Petviashvili I. J. Nonlin. Sci. 2022, 2022, 32–52. [Google Scholar] [CrossRef]
- Zhao, P.; Fan, E. The Algebro-Geometric Solutions for the Ruijsenaars Toda hierachy. arXiv 2012, arXiv:1204.4240v3. [Google Scholar]
- Gaillard, P. Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves. J. Math. Phys. 2016, 57, 063505. [Google Scholar] [CrossRef]
- Gaillard, P. Multiparametric families of solutions of the KPI equation, the structure of their rational representations and multi-rogue waves. Theor. Math. Phys. 2018, 196, 1174–1199. [Google Scholar] [CrossRef]
- Gaillard, P. Multiparametric rational solutions of order N to the KPI equation and the explicit case of order 3. Arch. Curr. Res. Int. 2021, 21, 58–71. [Google Scholar] [CrossRef]
- Lakshmanan, M.; Porsezian, K.; Daniel, M. Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 1998, 133, 483–488. [Google Scholar] [CrossRef]
- Yyldyrym, Y.; Topkara, E.; Biswas, A.; Triki, H.; Ekici, M.; Guggilla, P.; Khan, S.; Belic, M.R. Cubic quartic optical soliton perturbation with Lakshmanan Porsezian Daniel model by sine Gordon equation approach. J. Opt. 2021, 50, 322–329. [Google Scholar]
- Ye, Y.L.; Hou, D.D.; Cheng, C.; Chen, S.H. Rogue wave solutions of the vector Lakshmanan–Porsezian–Daniel equation. Phys. Lett. A 2020, 384, 126226. [Google Scholar] [CrossRef]
- Vega-Guzman, J.; Alqahtani, R.T.; Zhou, Q.; Mahmood, M.F.; Moshokoa, S.P.; Ullah, M.Z.; Biswas, A.; Belic, M. Optical solitons for Lakshmanan Porsezian Daniel model with spatio temporal dispersion using the method of undetermined coefficients. Optik 2017, 144, 115–123. [Google Scholar] [CrossRef]
- Manafian, J.; Foroutan, M.; Guzali, A. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan Porsezian Daniel model. Eur. Phys. J. Plus 2017, 132, 494. [Google Scholar] [CrossRef]
- Alqahtani, R.T.; Babatin, M.M.; Biswas, A. Bright optical solitons for Lakshmanan Porsezian Daniel model by semi-inverse variational principle. Optik 2018, 154, 109–114. [Google Scholar] [CrossRef]
- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Triki, H.; Majida, F.B.; Zhouf, Q.; Moshokoac, S.P.; Mirzazadeh, M.; Belic, M. Optical solitons with Lakshmanan Porsezian Daniel model using a couple of integration schemes. Optik 2018, 158, 705711. [Google Scholar] [CrossRef]
- Biswas, A.; Yyldyrym, Y.; Yasar, E.; Zhou, Q.; Moshokoac, S.P.; Belic, M. Optical solitons for Lakshmanan Porsezian Daniel model by modified simple equation method. Optik 2018, 160, 2432. [Google Scholar] [CrossRef]
- Bansala, A.; Biswasb, A.; Triki, H.; Zhou, Q.; Moshokoad, S.P.; Belic, M. Optical solitons and group invariant solutions to Lakshmanan Porsezian Daniel model in optical fibers and PCF. Optik 2018, 160, 8691. [Google Scholar] [CrossRef]
- AlQarni, A.A.; Ebaid, A.; Alshaery, A.A.; Bakodah, H.O.; Biswas, A.; Khan, S.; Ekici, M.; Zhou, Q.; Moshokoa, S.P.; Belic, M.R. Optical solitons for Lakshmanan Porsezian Daniel model by Riccati equation approach. Optik 2019, 182, 922–929. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Kumar, D.; Neirameh, A.; Eslami, M.; Mirzazadeh, M. Applications of three methods for obtaining optical soliton solutions for the LPD model with Kerr law nonlinearity. Pramana J. Phys. 2020, 89, 1–11. [Google Scholar]
- Hubert, M.B.; Betchewe, G.; Justin, M.; Doka, S.Y.; Crepin, K.T.; Biswas, A.; Zhou, Q.; Alshomrani, A.S.; Ekici, M.; Moshokoa, S.P.; et al. Optical solitons with Lakshmanan Porsezian Daniel model by modified extended direct algebraic method. Optik 2018, 162, 228–236. [Google Scholar] [CrossRef]
- Arshed, S.; Biswas, A.; Majid, F.B.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Optical solitons in birefringent fibers for Lakshmanan Porsezian Daniel model using exp(-iϕ)-expansion method. Optik 2018, 172, 651–656. [Google Scholar]
- Rezazadeh, H.; Mirzazadeh, M.; Mirhosseini-Alizamini, S.M.; Neirameh, A.; Eslami, M.; Zhou, Q. Optical solitons of Lakshmanan Porsezian Daniel model with a couple of nonlinearities. Optik 2018, 164, 414–423. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Dawood, M.; Baleanu, D. Optical solitons for Lakshmanan–Porsezian–Daniel equation with Kerr law non-linearity using improved tan expansion technique. Res. Phys. 2021, 29, 104758. [Google Scholar]
- Ismael, H.F.; Baskonius, H.M.; Bulut, H. Abundant novel solutions of the conformable Lakshmanan Porsezian Daniel model. Discret. Contin. Dyn. Syst.-S 2021, 14, 2311–2333. [Google Scholar] [CrossRef]
- Yepez-Martinez, H.; Rezazadeh, H.; Inc, M.; Ali-Akinlar, M.; Gomez-Aguilar, J.F. Analytical solutions to the fractional Lakshmanan–Porsezian–Daniel model. Opt. Quant. Elec. 2021, 54, 1–41. [Google Scholar] [CrossRef]
- Gaillard, P. Rogue Waves of the Lakshmanan Porsezian Daniel equation depending on multi-parameters. Asian J. Adv. Res. Rep. 2022, 16, 32–40. [Google Scholar] [CrossRef]
- Maccari, A. A generalized Hirota equation in 2+1 dimensions. J. Math. Phys. 1998, 39, 6547–6551. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Marchant, T.R. Soliton perturbation theory for a higher order Hirota equation. Math. Comput. Simul. 2008, 80, 770–778. [Google Scholar] [CrossRef]
- Zhang, R.F.; Guo, B.L. Global attractor for Hirota equation. Appl. Math. J. Chin. Univ. 2008, 23, 57–64. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Li, B.; Zhang, H. New exact travelling solutions to Hirota equation and (1+1)-dimensional dispersive long wave equation. Commun. Theor. Phys. 2004, 41, 821–828. [Google Scholar]
- Li, L.; Wu, Z.; Wang, L.; He, J. High-order rogue waves for the Hirota equation. Ann. Phys. 2013, 334, 198–211. [Google Scholar] [CrossRef]
- Ankiewicz, A.; Soto-Crespo, J.M.; Akhmediev, N. Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 2010, 81, 046602. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.J. Exact n-envelope-soliton solutions of the Hirota equation. Opt. Appl. 2003, 33, 539–546. [Google Scholar]
- Demontis, F.; Ortenzi, G.; der Mee, C.V. Exact solutions of the Hirota equation and vortex filaments motion. Phys. D Nonlinear Phenom. 2015, 313, 61–80. [Google Scholar] [CrossRef]
- Zhou, Y.; Manukure, S.; Ma, W.X. Lump and lump-soliton solutions to the Hirota–Satsuma–I equation. Commun. Nonlinear Sci. Numer. Simul. 2019, 68, 56–62. [Google Scholar] [CrossRef]
- Liu, D.Y.; Yu, H.M. Mixed localized wave solutions of the Hirota equation. Appl. Math. Lett. 2021, 118, 107154. [Google Scholar] [CrossRef]
- Gaillard, P. Rogue waves of the Hirota equation in terms of quasi-rational solutions depending on multi-parameters. WSEAS Trans. Math. 2023, 22, 190–203. [Google Scholar] [CrossRef]
- Dubard, P. Multi-Rogue Solutions to the Focusing NLS Equation. Ph.D. Thesis, Université de Bourgogne, Dijon, France, 2010. [Google Scholar]
- Vorob’ev, A.P. On the rational solutions of the second Painlevé equation. Differ. Uravn. 1965, 1, 79–81. [Google Scholar]
- Yablonskii, A.I. On rational solutions of the second Painleve equation, Vesti AN BSSR. Ser. Fiz.-Tech. Nauk 1959, 3, 30–35. [Google Scholar]
- Yang, B.; Yang, Y. Universal rogue wave patterns associated with the Yablonski Vorobev polynomial hierarchy. Phys. D Nonlinear Phenom. 2021, 425, 132958. [Google Scholar] [CrossRef]
2 | 1,051,741 | 531,675 |
3 | 559,480 | 282,841 |
4 | 348,403 | 176,084 |
5 | 245,676 | 124,198 |
6 | 183,131 | 92,581 |
7 | 143,053 | 72,324 |
8 | 115,599 | 58,448 |
9 | 94,974 | 48,014 |
10 | 76,243 | 38,529 |
11 | 55,015 | 27,787 |
12 | 30,003 | 15,154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaillard, P. Rogue Waves in the Nonlinear Schrödinger, Kadomtsev–Petviashvili, Lakshmanan–Porsezian–Daniel and Hirota Equations. Axioms 2025, 14, 94. https://doi.org/10.3390/axioms14020094
Gaillard P. Rogue Waves in the Nonlinear Schrödinger, Kadomtsev–Petviashvili, Lakshmanan–Porsezian–Daniel and Hirota Equations. Axioms. 2025; 14(2):94. https://doi.org/10.3390/axioms14020094
Chicago/Turabian StyleGaillard, Pierre. 2025. "Rogue Waves in the Nonlinear Schrödinger, Kadomtsev–Petviashvili, Lakshmanan–Porsezian–Daniel and Hirota Equations" Axioms 14, no. 2: 94. https://doi.org/10.3390/axioms14020094
APA StyleGaillard, P. (2025). Rogue Waves in the Nonlinear Schrödinger, Kadomtsev–Petviashvili, Lakshmanan–Porsezian–Daniel and Hirota Equations. Axioms, 14(2), 94. https://doi.org/10.3390/axioms14020094