Applications of Skew Models Using Generalized Logistic Distribution
Abstract
:1. Introduction
1.1. Generalized Logistic Distribution
1.2. Azzalini’s Skew Distribution
1.3. Moments
1.4. Generalized Hypergeometric Function
2. Skew Distributions
2.1. Skew Normal-Generalized Logistic Distribution
Moments
2.2. Skew Generalized Logistic-Normal Distribution
Moments
2.3. Skew Student-t-Generalized Logistic Distribution
Moments
2.4. Skew Generalized Logistic-Student-t Distribution
Moments
3. Applications to Real Data
3.1. Application 1: Expenditure on Education
- Skew Normal-GL: , , , and ;
- Skew GL-Normal: , , , , and ;
- Skew t-GL: , , , , and ;
- Skew GL-t: , , , , , and .
3.2. Application 2: Expenditure on Health
- Skew Normal-GL: , , , and ;
- Skew GL-Normal: , , , , and ;
- Skew t-GL: , , , , and ;
- Skew GL-t: , , , , , and .
3.3. Application 3: Waiting Time between Eruptions of Old Faithful Geyser
- Skew Normal-GL: , , , and ;
- Skew GL-Normal: , , , , and ;
- Skew t-GL: , , , , and ;
- Skew GL-t: , , , , , and .
4. Conclusions
- In general, the distributions introduced in this paper fit better the data when compared with the Skew Logistic-Normal, Skew Logistic-t, Skew Normal-Logistic and Skew t-Logistic distributions, introduced by Nadarajah and Kotz [6];
- The Skew GL-Normal, Skew GL-t, Skew Normal-GL and Skew t-GL distributions can be used to model symmetrical and asymmetrical unimodal data;
- The Skew GL-Normal and Skew GL-t distributions can be used to adjust bimodal symmetrical and asymmetrical data, offering good fits, showing a high flexibility which is not common in the literature on probability distributions, and this can be very important in practical applications;
- For application 1, the Skew GL-Normal and Skew GL-t distributions are preferable to fit this data because they present better and similar results (smaller values of AIC, AICC, BIC, MSE, MAD and MaxD), and, for applications 2 and 3, the Skew GL-t distribution is preferred to fit this data presenting better results;
- The distributions proposed in this paper apply to all applications without presenting numerical problems, unlike the proposed distributions by Nadarajah and Kotz [6] which had serious numerical problems to adjust bimodal data. (Section 3.3).
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. General R Codes
Appendix A.1. Skew Normal-GL Distribution
#READ THE DATA data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’) #SKEW NORMAL GENERALIZED LOGISTIC DISTRIBUTION - DENSITY dnormgen <- function(x, a, b, p, c, mu, sigma){ (2/sigma)*dnorm(x=x, mean=mu, sd=sigma)/(1+exp(-c*(x-mu)/sigma*(a+b*abs(c*(x-mu)/sigma)**p))) }
#GIVE THE INITIAL PARAMETERS HERE
theta <- theta0
#LOG-LIKELIHOOD FUNCTION
loglik <- function(pars){ a <- pars[1] b <- pars[2] p <- pars[3] c <- pars[4] mu <- pars[5] sigma <- pars[6] logl <-sum(log(dnormgen(x, a=a, b=b, p=p, c=c, mu=mu, sigma=sigma))) return(-logl) }
#FIT
fit=constrOptim(theta=theta, f=loglik, ui=rbind(c(1, 0, 0, 0, 0, 0), c(0, 1, 0, 0, 0, 0), c(0, 0, 1, 0, 0, 0),c(0, 0, 0, 0, 1, 0),c(0, 0, 0, 0, 0, 1)), ci=c(0, 0, 0, 0, 0), method="Nelder-Mead", outer.iterations=300)
Appendix A.2. Skew GL-Normal Distribution
#READ THE DATA data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)
#SKEW GENERALIZED LOGISTIC NORMAL DISTRIBUTION - DENSITY dglnorm <- function(x, a, b, p, c, mu, sigma){ 2/sigma*{(a+b*(1+p)*abs((x-mu)/sigma)**p)*exp(-(x-mu)/sigma*(a+b*abs((x-mu)/sigma)**p))/ (1+exp(-(x-mu)/sigma*(a+b*abs((x-mu)/sigma)**p)))**2}*pnorm(c*(x-mu)/sigma, mean=0,sd=1) }
#GIVE THE INITIAL PARAMETERS HERE
theta <- theta0
#LOG-LIKELIHOOD FUNCTION
loglik <- function(pars){ a <- pars[1] b <- pars[2] p <- pars[3] c <- pars[4] mu <- pars[5] sigma <- pars[6] logl <-sum(log(dglnorm(x, a=a, b=b, p=p, c=c, mu=mu, sigma=sigma))) return(-logl) }
#FIT
fit=constrOptim(theta=theta, f=loglik, ui=rbind(c(1, 0, 0, 0, 0, 0), c(0, 1, 0, 0, 0, 0), c(0, 0, 1, 0, 0, 0), c(0, 0, 0, 0, 1, 0),c(0, 0, 0, 0, 0, 1)), ci=c(0, 0, 0, 0, 0) , method="Nelder-Mead", outer.iterations=300)
Appendix A.3. Skew t-GL Distribution
#READ THE DATA data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)
#SKEW T GENERALIZED LOGISTIC DISTRIBUTION - DENSITY dtgen <- function(x, a, b, p, c, v, mu, sigma){ (2/sigma)*dt((x-mu)/sigma, df=v)/(1+exp(-c*(x-mu)/sigma*(a+b*abs(c*(x-mu)/sigma)**p))) }
#GIVE THE INITIAL PARAMETERS HERE
theta <- theta0
#LOG-LIKELIHOOD FUNCTION
loglik <- function(pars){ a <- pars[1] b <- pars[2] p <- pars[3] c <- pars[4] v <- pars[5] mu <- pars[6] sigma <- pars[7] logl <-sum(log(dtgen(x, a=a, b=b, p=p, c=c, v=v, mu=mu, sigma=sigma))) return(-logl) }
#FIT
fit=constrOptim(theta=theta, f=loglik, ui=rbind(c(1, 0, 0, 0, 0, 0, 0), c(0, 1, 0, 0, 0, 0, 0), c(0, 0, 1, 0, 0, 0, 0), c(0, 0, 0, 0, 1, 0, 0), c(0, 0, 0, 0, 0, 1, 0)), ci=c(0, 0, 0, 0, 0) , method="Nelder-Mead", outer.iterations=300)
Appendix A.4. Skew GL-t Distribution
#READ THE DATA data <- read.csv(file.choose(), header=T, stringsAsFactor=F, sep=’;’)
#SKEW GENERALIZED LOGISTIC T DISTRIBUTION - DENSITY dglt <- function(x, a, b, p, c, v, mu, sigma){ 2/sigma*{(a+b*(1+p)*abs((x-mu)/sigma)**p)*exp(-(x-mu)/sigma*(a+b*abs((x-mu)/sigma)**p))/ (1+exp(-(x-mu)/sigma*(a+b*abs((x-mu)/sigma)**p)))**2}*pt(c*(x-mu)/sigma, df=v) }
#GIVE THE INITIAL PARAMETERS HERE
theta <- theta0
#LOG-LIKELIHOOD FUNCTION
loglik <- function(pars){ a <- pars[1] b <- pars[2] p <- pars[3] c <- pars[4] v <- pars[5] mu <- pars[6] sigma <- pars[7] logl <-sum(log(dglt(x, a=a, b=b, p=p, c=c, v=v, mu=mu, sigma=sigma))) return(-logl) }
#FIT
fit=constrOptim(theta=theta, f=loglik, ui=rbind(c(1, 0, 0, 0, 0, 0, 0), c(0, 1, 0, 0, 0, 0, 0), c(0, 0, 1, 0, 0, 0, 0), c(0, 0, 0, 0, 1, 0, 0), c(0, 0, 0, 0, 0, 1, 0)), ci=c(0, 0, 0, 0, 0) , method="Nelder-Mead", outer.iterations=300)
Appendix B. Density Plots
Appendix B.1. Application 1: Expenditure on Education
Application 2: Expenditure on Health
References
- Abtahi, A.; Behboodian, J.; Shafari, M.A. General class of univariate skew distributions considering Stein’s lemma and infinite divisibility. Metrika 2010, 75, 193–206. [Google Scholar] [CrossRef]
- Rathie, P.N.; Coutinho, M. A new skew generalized logistic distribution and approximations to skew normal distribution. Aligarh J. Stat. 2011, 31, 1–12. [Google Scholar]
- Rathie, P.N.; Swamee, P.K.; Matos, G.G.; Coutinho, M.; Carrijo, T.B. H-function and statistical distributions. Ganita 2008, 59, 23–37. [Google Scholar]
- Rathie, P.N.; Swamee, P.K. On a New Invertible Generalized Logistic Distribution Approximation to Normal Distribution; Technical Research Report No. 07/2006; Department of Statistics, University of Brasilia: Brasilia, Brazil, 2006. [Google Scholar]
- Gupta, R.D.; Kundu, D. Generalized logistic distributions. J. Appl. Stat. Sci. 2010, 18, 51–66. [Google Scholar]
- Nadarajah, S.; Kotz, S. Skew distributions generated from different families. Acta Appl. Math. 2006, 91, 1–37. [Google Scholar] [CrossRef]
- Swamee, P.K.; Rathie, P.N. Invertible alternatives to normal and lognormal distributions. J. Hydrol. Eng. ASCE 2007, 12, 218–221. [Google Scholar] [CrossRef]
- Rathie, P.N. Normal Distribution, Univariate; Springer: Berlin, Germany, 2011; pp. 1012–1013. [Google Scholar]
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178. [Google Scholar]
- Luke, Y.L. The Special Functions and Their Approximations; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Springer, M.D. Algebra of Random Variables; John Wiley: New York, NY, USA, 1979. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Breach Science: Amsterdam, The Netherlands, 1986. [Google Scholar]
- The World Bank: Working for a World Free of Poverty. Government expenditure on education as % of GDP (%). Available online: http://data.worldbank.org/indicator/SE.XPD.TOTL.GD.ZS (accessed on 1 February 2016).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 1 February 2016).
- The World Bank: Working for a World Free of Poverty. Health expenditure, total (% of GDP). Available online: http://data.worldbank.org/indicator/SH.XPD.TOTL.ZS (accessed on 1 February 2016).
Model | AIC | BIC | AICC | KS-Test (p-Value) | MSE | MAD | MaxD |
---|---|---|---|---|---|---|---|
Skew GL-Normal | 448.29 | 429.20 | 461.22 | 0.9973 | 0.000387 | 0.0153 | 0.0481 |
Skew GL-t | 448.29 | 429.20 | 461.23 | 0.9973 | 0.000387 | 0.0153 | 0.0481 |
Skew Normal-GL | 609.70 | 593.33 | 620.91 | 0.1549 | 0.003777 | 0.0443 | 0.1417 |
Skew t-GL | 441.69 | 422.60 | 454.62 | 0.866 | 0.001086 | 0.0266 | 0.0736 |
Skew Logistic-Normal | 452.29 | 438.65 | 461.73 | 0.9973 | 0.000387 | 0.0153 | 0.0481 |
Skew Logistic-t | 465.02 | 448.66 | 476.23 | 0.9818 | 0.000683 | 0.0210 | 0.0588 |
Skew Normal-Logistic | 611.70 | 598.06 | 621.14 | 0.1549 | 0.004160 | 0.0581 | 0.1449 |
Skew t-Logistic | 450.39 | 434.02 | 461.59 | 0.9973 | 0.000389 | 0.0154 | 0.0459 |
Model | AIC | BIC | AICC | KS-Test (p-Value) | MSE | MAD | MaxD |
---|---|---|---|---|---|---|---|
Skew GL-Normal | 1040.04 | 1016.26 | 1050.52 | 0.993 | 0.000169 | 0.0104 | 0.0379 |
Skew GL-t | 1038.21 | 1017.54 | 1050.42 | 0.9904 | 0.000152 | 0.0103 | 0.0378 |
Skew Normal-GL | 1426.81 | 1406.42 | 1438.42 | 0.05759 | 0.003472 | 0.0497 | 0.1226 |
Skew t-GL | 1048.29 | 1024.50 | 1061.76 | 0.9774 | 0.000196 | 0.0103 | 0.0402 |
Skew Logistic-Normal | 1041.70 | 1024.71 | 1051.42 | 0.993 | 0.000211 | 0.0110 | 0.0401 |
Skew Logistic-t | 1057.58 | 1037.19 | 1069.18 | 0.2235 | 0.001299 | 0.0279 | 0.0975 |
Skew Normal-Logistic | 1442.35 | 1425.36 | 1452.07 | 0.02585 | 0.005780 | 0.0686 | 0.1371 |
Skew t-Logistic | 1040.60 | 1019.22 | 1054.21 | 0.9774 | 0.000233 | 0.0111 | 0.0407 |
Model | AIC | BIC | AICC | KS-Test (p-Value) | MSE | MAD | MaxD |
---|---|---|---|---|---|---|---|
Skew GL-Normal | 2055.26 | 2033.63 | 2066.95 | 0.7344 | 0.000439 | 0.0171 | 0.0378 |
Skew GL-t | 2053.27 | 2028.02 | 2066.84 | 0.7344 | 0.000439 | 0.0171 | 0.0378 |
Skew Normal-GL | 3454.74 | 3433.11 | 3466.43 | <0.0001 | 0.009393 | 0.0805 | 0.1915 |
Skew t-GL | 2120.98 | 2095.74 | 2134.55 | 0.01705 | 0.002896 | 0.0448 | 0.1077 |
Skew Logistic-Normal | 2149.71 | 2131.68 | 2159.49 | - | - | - | - |
Skew Logistic-t | 2147.71 | 2126.08 | 2159.40 | - | - | - | - |
Skew Normal-Logistic | 3494.18 | 3476.15 | 3503.95 | - | - | - | - |
Skew t-Logistic | 2178.58 | 2156.95 | 2190.26 | - | - | - | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathie, P.N.; Silva, P.; Olinto, G. Applications of Skew Models Using Generalized Logistic Distribution. Axioms 2016, 5, 10. https://doi.org/10.3390/axioms5020010
Rathie PN, Silva P, Olinto G. Applications of Skew Models Using Generalized Logistic Distribution. Axioms. 2016; 5(2):10. https://doi.org/10.3390/axioms5020010
Chicago/Turabian StyleRathie, Pushpa Narayan, Paulo Silva, and Gabriela Olinto. 2016. "Applications of Skew Models Using Generalized Logistic Distribution" Axioms 5, no. 2: 10. https://doi.org/10.3390/axioms5020010
APA StyleRathie, P. N., Silva, P., & Olinto, G. (2016). Applications of Skew Models Using Generalized Logistic Distribution. Axioms, 5(2), 10. https://doi.org/10.3390/axioms5020010