Fundamental Results for Pseudo-Differential Operators of Type 1, 1
Abstract
:1. Introduction
1.1. Background
1.2. Outline of Results
1.3. Contents
2. Preliminaries on Type 1, 1-Operators
2.1. The General Definition of Type 1, 1-Operators
2.2. General Smooth Functions
2.3. Conditions along the Twisted Diagonal
3. Pointwise Estimates
3.1. The Factorisation Inequality
3.2. Estimates of Frequency Modulated Operators
4. Adjoints of Type 1, 1-Operators
4.1. The Basic Lemma
4.2. The Self-Adjoint Subclass
- (i)
- The adjoint symbol is also in .
- (ii)
- For arbitrary and α, β there is some constant such that
- (iii)
- For all there is a constant such that for
4.2.1. Equivalence of (ii) and (iii)
4.2.2. The Implication (ii) ⇒ (i) and the Estimate
4.2.3. Verification of (i) ⇒ (ii)
4.2.4. Consequences for the Self-Adjoint Subclass
5. Dyadic Corona Decompositions
5.1. The Paradifferential Splitting
5.2. Polynomial Bounds
5.3. Induced Paradifferential Operators
6. Action on Temperate Distributions
6.1. Littlewood-Paley Analysis of Type 1, 1-Operators
6.2. The Twisted Diagonal Condition of Arbitrary Order
7. Final Remarks
Acknowledgments
Conflicts of Interest
Appendix A. Dyadic Corona Criteria
Appendix B. The Spectral Support Rule
References
- Hörmander, L. Pseudo-Differential Operators and Hypoelliptic Equations; American Mathematical Society: Providence, RI, USA, 1967; pp. 138–183. [Google Scholar]
- Ching, C.H. Pseudo-differential operators with nonregular symbols. J. Differ. Equ. 1972, 11, 436–447. [Google Scholar] [CrossRef]
- Stein, E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA, 1993; Volume 43. [Google Scholar]
- Parenti, C.; Rodino, L. A pseudo differential operator which shifts the wave front set. Proc. Am. Math. Soc. 1978, 72, 251–257. [Google Scholar] [CrossRef]
- Meyer, Y. Régularité des Solutions des Équations aux Dérivées Partielles Non Linéaires; Springer: Berlin, Germany, 1981; pp. 293–302. [Google Scholar]
- Meyer, Y. Remarques sur un théorème de J.-M. Bony. In Proceedings of the Seminar on Harmonic Analysis, Pisa, Italy, 4–22 August 1980.
- Bony, J.-M. Calcul symbolique et propagations des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Supérieure 1981, 14, 209–246. [Google Scholar]
- Bourdaud, G. Lp-estimates for certain non-regular pseudo-differential operators. Commun. Partial Differ. Equ. 1982, 7, 1023–1033. [Google Scholar] [CrossRef]
- Bourdaud, G. Sur les Opérateurs Pseudo-Différentiels à Coefficients peu Reguliers. Doctoral Dissertation, Univ. de Paris-Sud, Paris, France, 1983. [Google Scholar]
- Bourdaud, G. Une algèbre maximale d’opérateurs pseudo-différentiels. Commun. Partial Differ. Equ. 1988, 13, 1059–1083. [Google Scholar] [CrossRef]
- Bourdaud, G. Une Algèbre Maximale d’Opérateurs Pseudo-Différentiels de Type 1, 1; Séminaire 1987–1988, Équations aux Dérivées Partielles; École Polytech.: Palaiseau, France, 1988; pp. VII1–VII17. [Google Scholar]
- Hörmander, L. Pseudo-differential operators of type 1, 1. Commun. Partial Differ. Equ. 1988, 13, 1085–1111. [Google Scholar] [CrossRef]
- Hörmander, L. Continuity of pseudo-differential operators of type 1, 1. Commun. Partial Differ. Equ. 1989, 14, 231–243. [Google Scholar] [CrossRef]
- Hörmander, L. Lectures on Nonlinear Hyperbolic Differential Equations; Mathématiques & Applications; Springer Verlag: Berlin, Germany, 1997; Volume 26. [Google Scholar]
- Taylor, M.E. Pseudodifferential Operators and Nonlinear PDE; Progress in Mathematics; Birkhäuser Boston Inc.: Boston, MA, USA, 1991; Volume 100. [Google Scholar]
- Johnsen, J. Type 1, 1-Operators Defined by Vanishing Frequency Modulation; Rodino, L., Wong, M.W., Eds.; Birkhäuser: Basel, Switzerland, 2008; Volume 189, pp. 201–246. [Google Scholar]
- Johnsen, J. Lp-theory of type 1, 1-operators. Math. Nachr. 2013, 286, 712–729. [Google Scholar] [CrossRef]
- Métivier, G. Para-Differential Calculus and Applications to the Cauchy Roblem for Nonlinear Systems; Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series; Edizioni della Normale: Pisa, Italy, 2008; Volume 5. [Google Scholar]
- Torres, R.H. Continuity properties of pseudodifferential operators of type 1, 1. Commun. Partial Differ. Equ. 1990, 15, 1313–1328. [Google Scholar] [CrossRef]
- Marschall, J. Weighted parabolic Triebel spaces of product type. Fourier multipliers and pseudo-differential operators. Forum Math. 1991, 3, 479–511. [Google Scholar] [CrossRef]
- Grafakos, L.; Torres, R. H. Pseudodifferential operators with homogeneous symbols. Mich. Math. J. 1999, 46, 261–269. [Google Scholar] [CrossRef]
- Taylor, M. Tools for PDE; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2000; Volume 81. [Google Scholar]
- Hérau, F. Melin inequality for paradifferential operators and applications. Commun. Partial Differ. Equ. 2002, 27, 1659–1680. [Google Scholar] [CrossRef]
- Lannes, D. Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. J. Funct. Anal. 2006, 232, 495–539. [Google Scholar] [CrossRef]
- Johnsen, J. Parametrices and exact paralinearisation of semi-linear boundary problems. Commun. Partial Differ. Equ. 2008, 33, 1729–1787. [Google Scholar] [CrossRef]
- Hounie, J.; dos Santos Kapp, R.A. Pseudodifferential operators on local Hardy spaces. J. Fourier Anal. Appl. 2009, 15, 153–178. [Google Scholar] [CrossRef]
- Bernicot, F.; Torres, R. Sobolev space estimates for a class of bilinear pseudodifferential operators lacking symbolic calculus. Anal. PDE 2011, 4, 551–571. [Google Scholar] [CrossRef]
- David, G.; Journé, J.-L. A boundedness criterion for generalized Calderón-Zygmund operators. Ann. Math. 1984, 120, 371–397. [Google Scholar] [CrossRef]
- Johnsen, J. Pointwise estimates of pseudo-differential operators. J. Pseudo Differ. Oper. Appl. 2011, 2, 377–398. [Google Scholar] [CrossRef]
- Tataru, D. Parametrices and dispersive estimates for Schrödinger operators with variable coefficients. Am. J. Math. 2008, 130, 571–634. [Google Scholar] [CrossRef]
- Delort, J.-M. Periodic solutions of nonlinear Schrödinger equations: A paradifferential approach. Anal. PDE 2011, 4, 639–676. [Google Scholar] [CrossRef]
- Nicola, F.; Rodino, L. Propagation of Gabor singularities for semilinear Schrödinger equations. NoDEA Nonlinear Differ. Equ. Appl. 2015, 22, 1715–1732. [Google Scholar] [CrossRef]
- Boutet de Monvel, L. Boundary problems for pseudo-differential operators. Acta Math. 1971, 126, 11–51. [Google Scholar] [CrossRef]
- Boulkhemair, A. Remarque sur la quantification de Weyl pour la classe de symboles . C. R. Acad. Sci. Paris Sér. I Math. 1995, 321, 1017–1022. [Google Scholar]
- Boulkhemair, A. L2 estimates for Weyl quantization. J. Funct. Anal. 1999, 165, 173–204. [Google Scholar] [CrossRef]
- Johnsen, J. Domains of pseudo-differential operators: A case for the Triebel-Lizorkin spaces. J. Funct. Spaces Appl. 2005, 3, 263–286. [Google Scholar] [CrossRef]
- Yamazaki, M. A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1986, 33, 131–174. [Google Scholar]
- Runst, T. Pseudodifferential operators of the “exotic” class in spaces of Besov and Triebel-Lizorkin type. Ann. Glob. Anal. Geom. 1985, 3, 13–28. [Google Scholar] [CrossRef]
- Johnsen, J. Domains of type 1, 1 operators: A case for Triebel-Lizorkin spaces. C. R. Acad. Sci. Paris Sér. I Math. 2004, 339, 115–118. [Google Scholar] [CrossRef]
- Coifman, R.R.; Meyer, Y. Au delà des Opérateurs Pseudo-Différentiels; Astérisque, Société Mathématique de France: Paris, France, 1978; Volume 57. [Google Scholar]
- Hörmander, L. The Analysis of Linear Partial Differential Operators; Grundlehren der Mathematischen Wissenschaften; Springer Verlag: Berlin, Germany, 1983. [Google Scholar]
- Johnsen, J. Simple proofs of nowhere-differentiability for Weierstrass’s function and cases of slow growth. J. Fourier Anal. Appl. 2010, 16, 17–33. [Google Scholar] [CrossRef]
- Kumano-go, H.; Nagase, M. Pseudo-differential operators with non-regular symbols and applications. Funkc. Ekvacio 1978, 21, 151–192. [Google Scholar]
- Peetre, J. New Thoughts on Besov Spaces; Mathematic Series; Duke Univ.: Durham, UK, 1976. [Google Scholar]
- Triebel, H. Multiplication properties of the spaces and . Ann. Mat. Pura Appl. 1977, 113, 33–42. [Google Scholar] [CrossRef]
- Johnsen, J. Pointwise multiplication of Besov and Triebel-Lizorkin spaces. Math. Nachr. 1995, 175, 85–133. [Google Scholar] [CrossRef]
- Coifman, R.R.; Meyer, Y. Wavelets; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Johnsen, J.; Sickel, W. On the trace problem for Lizorkin–Triebel spaces with mixed norms. Math. Nachr. 2008, 281, 1–28. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnsen, J. Fundamental Results for Pseudo-Differential Operators of Type 1, 1. Axioms 2016, 5, 13. https://doi.org/10.3390/axioms5020013
Johnsen J. Fundamental Results for Pseudo-Differential Operators of Type 1, 1. Axioms. 2016; 5(2):13. https://doi.org/10.3390/axioms5020013
Chicago/Turabian StyleJohnsen, Jon. 2016. "Fundamental Results for Pseudo-Differential Operators of Type 1, 1" Axioms 5, no. 2: 13. https://doi.org/10.3390/axioms5020013
APA StyleJohnsen, J. (2016). Fundamental Results for Pseudo-Differential Operators of Type 1, 1. Axioms, 5(2), 13. https://doi.org/10.3390/axioms5020013