Contribution of Warsaw Logicians to Computational Logic
Abstract
:1. Introduction
2. Computability
3. Logic of Algorithms
4. Dynamic Logic Meets Complexity Theory
5. Completeness Theorem for the μ-Calculus
6. The λ-Calculus: Proofs vs. Programs
On the other hand, the mathematical mechanism of intuitionistic logic is interesting: it is amazing that vaguely defined philosophical ideas concerning the notion of existence in mathematics have led to the creation of formalized logical systems which, from mathematical point of view, proved to be equivalent to the theory of lattices of open subsets of topological spaces.
7. Logic of Uncertainty
8. The Limits of Automata Theory
Acknowledgments
Conflicts of Interest
References
- Grzegorczyk, A. Some classes of recursive functions. Rozpr. Matemayczne 1953, 4, 1–45. [Google Scholar]
- Banach, S.; Mazur, S. Sur les fonctions calculables. Ann. Soc. Pol. Math. 1937, 16, 223. [Google Scholar]
- Mazur, S. Computable analysis. Rozpr. Matemayczne 1963, 33, 1–111. [Google Scholar]
- Specker, E. Nicht Konstruktiv Beweisbare Sätze Der Analysis. J. Symb. Log. 1949, 14, 145–158. [Google Scholar] [CrossRef]
- Feferman, S. Tarski’s Influence on Computer Science. In Proceedings of the 20th IEEE Symposium on Logic in Computer Science (LICS), Chicago, IL, USA, 26–29 June 2005.
- Tarski, A. Sur les ensembles définissables de nombres réels I. Fundam. Math. 1931, 17, 210–239. [Google Scholar]
- Presburger, M. Über der Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchen die Addition als einzige Operation hervortritt. In Comptes Rendus Premier Congrès des Mathématicienes des Pays Slaves; Leja, F., Ed.; Ksia̧żnica Atlas T.N.S.W.: Warsaw, Poland, 1929; pp. 92–101. [Google Scholar]
- Rasiowa, H.; Sikorski, R. The Mathematics of Metamatematics, 3rd ed.; PWN—Polish Scientific Publishers: Warszawa, Poland, 1963. [Google Scholar]
- Engeler, E. Algorithmic properties of structures. Theor. Comput. Sci. 1967, 1, 183–195. [Google Scholar] [CrossRef]
- Salwicki, A. Formalized algorithmic languages. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 1970, 18, 227–232. [Google Scholar]
- Mirkowska, G. On formalized systems of algorithmic logic. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 1971, 19, 421–428. [Google Scholar]
- Kreczmar, A. Effectivity Problems in Algorithmic Logic. Ph.D. Thesis, Faculty of Mathematics and Mechanics, University of Warsaw, Warsaw, Poland, 1973. [Google Scholar]
- Rasiowa, H. ω+-valued algorithmic logic as a tool to investigate procedures. In Mathematical Foundations of Computer Science; Springer: Berlin, Germany, 1975; pp. 423–450. [Google Scholar]
- Mirkowska, G.; Salwicki, A. Algorithmic Logic; PWN—Polish Scientific Publishers: Warszawa, Poland, 1987. [Google Scholar]
- Kreczmar, A.; Salwicki, A.; Warpechowski, M. LOGLAN’88—Report on the Programming Language; Springer: Berlin, Germany, 1990. [Google Scholar]
- Pratt, V. Semantical Considerations on Floyd-Hoare Logic. In Proceedings of the 17th Annual IEEE Symposium on Foundations of Computer Science, Houston, TX, USA, 25–27 October 1976; pp. 109–121.
- Harel, D.; Kozen, D.; Tiuryn, J. Dynamic Logic; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Tiuryn, J.; Urzyczyn, P. Some Relationships between Logics of Programs and Complexity Theory (Extended abstract). In Proceedings of the 24th Annual Symposium on Foundations of Computer Science, Tucson, AZ, USA, 7–9 November 1983; pp. 180–184.
- Immerman, N. Descriptive Complexity; Springer: Berlin, Germany, 1999. [Google Scholar]
- Kozen, D. Results on the propositional μ-calculus. In Automata, Languages, and Programming; Springer: Berlin, Germany, 1982; pp. 348–359. [Google Scholar]
- Niwiński, D. Fixed points vs. infinite generation. In Proceedings of the Third Annual Symposium on Logic in Computer Science, Edinburgh, UK, 5–8 July 1988; pp. 402–409.
- Rabin, M.O. Decidability of second-order theories and automata on infinite trees. Trans. Am. Soc 1969, 141, 1–35. [Google Scholar]
- Walukiewicz, I. Completeness of Kozen’s Axiomatisation of the Propositional mu-Calculus. In Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science, San Diego, CA, USA, 26–29 June 1995; pp. 14–24.
- Walukiewicz, I. Monadic second-order logic on tree-like structures. Theor. Comput. Sci. 2002, 275, 311–346. [Google Scholar] [CrossRef]
- Wajsberg, M. Untersuchungen über den Aussagenkalkül von A. Heyting. Wiad. Matematyczne 1938, 46, 45–101. [Google Scholar]
- Kfoury, A.; Tiuryn, J.; Urzyczyn, P. The Undecidability of the Semi-unification Problem. Inf. Comput. 1993, 102, 83–101. [Google Scholar] [CrossRef]
- Schubert, A. Second-Order Unification and Type Inference for Church-Style Polymorphism. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA, USA, 19–21 January 1998; pp. 279–288.
- Sørensen, M.H.; Urzyczyn, P. Lectures on the Curry-Howard Isomorphism; Studies in Logic and Foundations of Mathematics; Elsevier: Amsterdam, The Netherlands, 2006; Volume 149. [Google Scholar]
- Pawlak, Z. Rough sets. Int. J. Parallel Program. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Jankowski, A.; Skowron, A. Logic for Artificial Intelligence: A Rasiowa—Pawlak School Perspective. In Andrzej Mostowski and Foundational Science; Ehrenfeucht, A., Marek, V.W., Srebrny, M., Eds.; IOS Press: Amsterdam, The Netherlands, 2008; pp. 106–143. [Google Scholar]
- Lipski, W. On Semantic Issues Connected with Incomplete Information Databases. ACM Trans. Database Syst. 1979, 4, 262–296. [Google Scholar] [CrossRef]
- Buss, S.R.; Kołodziejczyk, L.; Zdanowski, K. Collapsing modular counting in bounded arithmetic and constant depth propositional proofs. Trans. Am. Math. Soc. 2015, 367, 7517–7563. [Google Scholar] [CrossRef]
- Knapik, T.; Niwiński, D.; Urzyczyn, P. Higher-Order Pushdown Trees Are Easy. In Foundations of Software Science and Computation Structures; Springer: Berlin, Germany, 2002; pp. 205–222. [Google Scholar]
- Bojańczyk, M. A Bounding Quantifier. In Computer Science Logic; Springer: Berlin, Germany, 2004; pp. 41–55. [Google Scholar]
- Bojańczyk, M.; Toruńczyk, S. Weak MSO+U over infinite trees. In Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science, Paris, France, 29 February–3 March 2012; pp. 48–66.
- Bojańczyk, M.; Colcombet, T. Bounds in ω-Regularity. In Proceedings of the 21th IEEE Symposium on Logic in Computer Science, Seattle, WA, USA, 12–15 August 2006; pp. 285–296.
- Bojańczyk, M.; Parys, P.; Toruńczyk, S. The MSO+U Theory of (N,<) is undecidable. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science, Orléan, France, 17–20 February 2016; pp. 1–8.
- Bojańczyk, M.; Gogacz, T.; Michalewski, H.; Skrzypczak, M. On the Decidability of MSO+U on Infinite Trees. In Automata, Languages, and Programming—41st International Colloquium; Springer: Berlin, Germany, 2015; pp. 50–61. [Google Scholar]
- Krajewski, S.; Srebrny, M. On the Life and Work of Andrzej Mostowski (1913–1975). In Andrzej Mostowski and Foundational Science; Ehrenfeucht, A., Marek, V.W., Srebrny, M., Eds.; IOS Press: Amsterdam, The Netherlands, 2008; pp. 3–14. [Google Scholar]
- Bojańczyk, M.; Braud, L.; Klin, B.; Lasota, S. Towards nominal computation. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Philadelphia, PA, USA, 22–28 January 2012; pp. 401–412.
- Klin, B.; Lasota, S.; Ochremiak, J.; Toruńczyk, S. Turing machines with atoms, constraint satisfaction problems, and descriptive complexity. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Vienna, Austria, 14–18 July 2014; pp. 58:1–58:10.
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niwiński, D. Contribution of Warsaw Logicians to Computational Logic. Axioms 2016, 5, 16. https://doi.org/10.3390/axioms5020016
Niwiński D. Contribution of Warsaw Logicians to Computational Logic. Axioms. 2016; 5(2):16. https://doi.org/10.3390/axioms5020016
Chicago/Turabian StyleNiwiński, Damian. 2016. "Contribution of Warsaw Logicians to Computational Logic" Axioms 5, no. 2: 16. https://doi.org/10.3390/axioms5020016
APA StyleNiwiński, D. (2016). Contribution of Warsaw Logicians to Computational Logic. Axioms, 5(2), 16. https://doi.org/10.3390/axioms5020016