Final Value Problems for Parabolic Differential Equations and Their Well-Posedness
Abstract
:1. Introduction
1.1. Background
1.2. The Abstract Final Value Problem
1.3. The Inhomogeneous Heat Problem
1.4. Contents
2. Preliminaries
2.1. Lax–Milgram Operators
2.2. The Self-Adjoint Case
2.3. Semigroups
2.3.1. Injectivity
2.3.2. Some Regularity Properties
3. Functional Analysis of Initial Value Problems
- (i)
- u is a.e. equal to a primitive function of g, i.e., for some vector
- (ii)
- For each test function one has .
- (iii)
- For each η in the dual space , holds in .
3.1. Existence and Uniqueness
3.2. Well-Posedness
3.3. The First Order Solution Formula
3.4. Non-Selfadjoint Dynamics
4. Abstract Final Value Problems
4.1. A Bijection From Initial to Terminal States
4.2. Well-Posedness of the Final Value Problem
5. The Heat Equation With Final Data
5.1. The Boundary Homogeneous Case
5.2. The Inhomogeneous Case
6. Final Remarks
6.1. Applicability
- (i)
- is injective and holds for some with .
- (ii)
- is injective with range for every .
- (iii)
- The semigroup is embedded into a -group satisfying ;
- (iv)
- The spectrum is contained in the strip in where and
6.2. Notes
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Christensen, A.-E.; Johnsen, J. On parabolic final value problems and well-posedness. C. R. Acad. Sci. Paris Ser. I 2018, 356, 301–305. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; Interscience Publishers, Inc.: New York, NY, USA, 1953. [Google Scholar]
- John, F. Numerical solution of the equation of heat conduction for preceding times. Ann. Mat. Pura Appl. 1955, 40, 129–142. [Google Scholar]
- Miranker, W.L. A well posed problem for the backward heat equation. Proc. Am. Math. Soc. 1961, 12, 243–247. [Google Scholar]
- Payne, L.E. Improperly Posed Problems in Partial Differential Equations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1975. [Google Scholar]
- Isakov, V. Inverse Problems for Partial Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 1998; Volume 127. [Google Scholar]
- Günter, N.M. Potential Theory and Its Applications to Basic Problems of Mathematical Physics; Frederick Ungar Publishing Co.: New York, NY, USA, 1967. [Google Scholar]
- Lions, J.-L.; Magenes, E. Non-Homogeneous Boundary Value Problems And Applications; Springer: New York, NY, USA; Heidelberg, Germany, 1972. [Google Scholar]
- Tanabe, H. Equations of Evolution; Monographs and Studies in Mathematics; Pitman: Boston, MA, USA, 1979. [Google Scholar]
- Temam, R. Navier—Stokes Equations, Theory and Numerical Analysis, 3rd ed.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Amann, H. Linear and Quasilinear Parabolic Problems; Monographs in Mathematics; Birkhäuser, Inc.: Boston, MA, USA, 1995; Volume 89. [Google Scholar]
- Almog, Y.; Helffer, B. On the Spectrum of Non-Selfadjoint Schrödinger Operators with Compact Resolvent. Commun. Partial Differ. Equ. 2015, 40, 1441–1466. [Google Scholar]
- Grebenkov, D.S.; Helffer, B. On Spectral Properties of the Bloch—Torrey Operator in Two Dimensions. SIAM J. Math. Anal. 2018, 50, 622–676. [Google Scholar]
- Grebenkov, D.S.; Helffer, B.; Henry, R. The complex Airy operator on the line with a semipermeable barrier. SIAM J. Math. Anal. 2017, 49, 1844–1894. [Google Scholar]
- Grubb, G.; Solonnikov, V.A. Solution of parabolic pseudo-differential initial-boundary value problems. J. Differ. Equ. 1990, 87, 256–304. [Google Scholar]
- Lions, J.-L.; Malgrange, B. Sur l’unicité rétrograde dans les problèmes mixtes parabolic. Math. Scand. 1960, 8, 227–286. [Google Scholar]
- Showalter, R.E. The final value problem for evolution equations. J. Math. Anal. Appl. 1974, 47, 563–572. [Google Scholar]
- Janas, J. On unbounded hyponormal operators III. Stud. Math. 1994, 112, 75–82. [Google Scholar]
- Yosida, K. Functional Analysis, 6th ed.; Springer: Berlin, Germany; New York, NY, USA, 1980. [Google Scholar]
- Grubb, G. Distributions and Operators; Graduate Texts in Mathematics; Springer: New York, NY, USA, 2009; Volume 252. [Google Scholar]
- Schwartz, L. Théorie des Distributions; Hermann: Paris, France, 1966. [Google Scholar]
- Hörmander, L. The Analysis of Linear Partial Differential Operators; Grundlehren der mathematischen Wissenschaften; Springer: Berlin, Germany, 1983; p. 1985. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Applied Mathematical Sciences; Springer: New York, NY, USA, 1983. [Google Scholar]
- Reed, M.; Simon, B. Methods of Modern Mathemtical Physics. I: Functional Analysis; Academic Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications. a Contemporary Approach; CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC; Springer: New York, NY, USA, 2006. [Google Scholar]
- Johnsen, J. On spectral properties of Witten-Laplacians, their range projections and Brascamp–Lieb’s inequality. Integr. Equ. Oper. Theory 2000, 36, 288–324. [Google Scholar]
- Johnsen, J.; Hansen, S.M.; Sickel, W. Anisotropic Lizorkin–Triebel spaces with mixed norms—Traces on smooth boundaries. Math. Nachr. 2015, 288, 1327–1359. [Google Scholar]
- Johnsen, J.; Sickel, W. On the trace problem for Lizorkin–Triebel spaces with mixed norms. Math. Nachr. 2008, 281, 1–28. [Google Scholar]
- Hansen, S.M. On Parabolic Boundary Problems Treated in Mixed-Norm Lizorkin–Triebel Spaces. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 2013. [Google Scholar]
- Arendt, W.; Batty, C.J.K.; Hieber, M.; Neubrander, F. Vector-Valued Laplace Transforms and Cauchy Problems, 2nd ed.; Monographs in Mathematics; Springer: Basel, Switzerland, 2011; Volume 96. [Google Scholar]
- Grubb, G. Functional Calculus of Pseudo-Differential Boundary Problems, 2nd ed.; Progress in Mathematics; Birkhäuser: Boston, MA, USA, 1996; Volume 65. [Google Scholar]
- Herbst, I.W. Dilation analyticity in constant electric field. I. The two body problem. Commun. Math. Phys. 1979, 64, 279–298. [Google Scholar]
- Lieberman, G.M. Second Order Parabolic Differential Equations, 2nd ed.; World Scientific Publishing: River Edge, NJ, USA, 2005. [Google Scholar]
- Evans, L.C. Partial Differential Equations, 2nd ed.; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2010; Volume 19. [Google Scholar]
- Ladyzenskaya, O.A.; Solonnikov, V.A.; Ural’ceva, N.N. Linear and Quasilinear Equations of Parabolic Type; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1968. [Google Scholar]
- Grubb, G. Parameter-elliptic and parabolic pseudodifferential boundary problems in global Lp Sobolev spaces. Math. Z. 1995, 218, 43–90. [Google Scholar]
- Denk, R.; Kaip, M. General Parabolic Mixed Order Systems In Lp and Applications; Operator Theory: Advances and Applications; Birkhäuser: Boston, MA, USA, 2013; Volume 239. [Google Scholar]
- Dardé, J.; Ervedoza, S. Backward Uniqueness Results for Some Parabolic Equations in an Infinite Rod. Available online: https://hal.archives-ouvertes.fr/hal-01677033 (accessed on 29 March 2018).
- Hào, D.N.; van Duc, N. Stability results for backward parabolic equations with time-dependent coefficients. Inverse Probl. 2011, 25, 20. [Google Scholar] [CrossRef]
- Kukavica, I. Log-log convexity and backward uniqueness. Proc. Am. Math. Soc. 2007, 135, 2415–2421. [Google Scholar]
- Lattès, R.; Lions, J.-L. Méthode de quasi-réversibilité et applications; Travaux et Recherches Mathématiques: Dunod, Paris, 1967. [Google Scholar]
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems; Applied Mathematical Sciences; Springer-Verlag: New York, NY, USA, 1996; Volume 120. [Google Scholar]
- Fernández-Cara, E.; Guerrero, S. Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 2006, 45, 1399–1446. [Google Scholar]
- Koch, H.; Tataru, D. Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients. Commun. Part. Differ. Equ. 2009, 34, 305–366. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christensen, A.-E.; Johnsen, J. Final Value Problems for Parabolic Differential Equations and Their Well-Posedness. Axioms 2018, 7, 31. https://doi.org/10.3390/axioms7020031
Christensen A-E, Johnsen J. Final Value Problems for Parabolic Differential Equations and Their Well-Posedness. Axioms. 2018; 7(2):31. https://doi.org/10.3390/axioms7020031
Chicago/Turabian StyleChristensen, Ann-Eva, and Jon Johnsen. 2018. "Final Value Problems for Parabolic Differential Equations and Their Well-Posedness" Axioms 7, no. 2: 31. https://doi.org/10.3390/axioms7020031
APA StyleChristensen, A. -E., & Johnsen, J. (2018). Final Value Problems for Parabolic Differential Equations and Their Well-Posedness. Axioms, 7(2), 31. https://doi.org/10.3390/axioms7020031