Advanced Numerical Methods in Applied Sciences
Abstract
:1. Special Issue Overview
- Computer graphics [13];
1.1. Numerical Linear Algebra
1.2. Numerical Solution of Differential Equations
1.3. Geometric Integration
1.4. Computer Graphics
1.5. Optimization
Conflicts of Interest
References
- Laudadio, T.; Matronardi, N.; van Dooren, P. The Generalized Schur Algorithm and Some Applications. Axioms 2018, 7, 81. [Google Scholar] [CrossRef]
- Morini, B. On Partial Cholesky Factorization and a Variant of Quasi-Newton Preconditioners for Symmetric Positive Definite Matrices. Axioms 2018, 7, 44. [Google Scholar] [CrossRef]
- Garoni, C.; Mazza, M.; Serra-Capizzano, S. Block Generalized Locally Toeplitz Sequences: From the Theory to the Applications. Axioms 2018, 7, 49. [Google Scholar] [CrossRef]
- Butcher, J.C. Trees, Stumps, and Applications. Axioms 2018, 7, 52. [Google Scholar] [CrossRef]
- Cardone, A.; Conte, D.; D’Ambrosio, R.; Paternoster, B. Collocation Methods for Volterra Integral and Integro-Differential Equations: A Review. Axioms 2018, 7, 45. [Google Scholar] [CrossRef]
- Burrage, K.; Burrage, P.; Turner, I.; Zheng, F. On the Analysis of Mixed-Index Time Fractional Differential Equation Systems. Axioms 2018, 7, 25. [Google Scholar] [CrossRef]
- Pitolli, F. Optimal B-Spline Bases for the Numerical Solution of Fractional Differential Problems. Axioms 2018, 7, 46. [Google Scholar] [CrossRef]
- Cardone, A.; Conte, D.; D’Ambrosio, R.; Paternoster, B. Stability Issues for Selected Stochastic Evolutionary Problems: A Review. Axioms 2018, 7, 91. [Google Scholar] [CrossRef]
- Aimi, A.; Diazzi, L.; Guardasoni, C. Efficient BEM-Based Algorithm for Pricing Floating Strike Asian Barrier Options (with MATLAB® Code). Axioms 2018, 7, 40. [Google Scholar] [CrossRef]
- Dumbser, M.; Fambri, F.; Bader, M.T.M.; Weinzierl, T. Efficient Implementation of ADER Discontinuous Galerkin Schemes for a Scalable Hyperbolic PDE Engine. Axioms 2018, 7, 63. [Google Scholar] [CrossRef]
- Mazzia, F.; Sestini, A. On a Class of Conjugate Symplectic Hermite-Obreshkov One-Step Methods with Continuous Spline Extension. Axioms 2018, 7, 58. [Google Scholar] [CrossRef]
- Brugnano, L.; Iavernaro, F. Line Integral Solution of Differential Problems. Axioms 2018, 7, 36. [Google Scholar] [CrossRef]
- Bracco, C.; Giannelli, C.; Vásquez, R. Refinement Algorithms for Adaptive Isogeometric Methods with Hierarchical Splines. Axioms 2018, 7, 43. [Google Scholar] [CrossRef]
- Scalone, C.; Guglielmi, N. A Gradient System for Low Rank Matrix Completion. Axioms 2018, 7, 51. [Google Scholar] [CrossRef]
- Chan, K.C.K.; Chan, R.H.; Nikolova, M. A Convex Model for Edge-Histogram Specification with Applications to Edge-Preserving Smoothing. Axioms 2018, 7, 53. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brugnano, L.; Iavernaro, F. Advanced Numerical Methods in Applied Sciences. Axioms 2019, 8, 16. https://doi.org/10.3390/axioms8010016
Brugnano L, Iavernaro F. Advanced Numerical Methods in Applied Sciences. Axioms. 2019; 8(1):16. https://doi.org/10.3390/axioms8010016
Chicago/Turabian StyleBrugnano, Luigi, and Felice Iavernaro. 2019. "Advanced Numerical Methods in Applied Sciences" Axioms 8, no. 1: 16. https://doi.org/10.3390/axioms8010016
APA StyleBrugnano, L., & Iavernaro, F. (2019). Advanced Numerical Methods in Applied Sciences. Axioms, 8(1), 16. https://doi.org/10.3390/axioms8010016