Fixed Point Theorems for Geraghty Contraction Type Mappings in b-Metric Spaces and Applications
Abstract
:1. Introduction
- (i)
- if and only if ,
- (ii)
- ,
- (iii)
- (b-triangular inequality).
2. Results
- (i)
- ,
- (ii)
- ,
- (iii)
- .
- (iv)
- .
3. Applications to Nonlinear Integral Equations
Author Contributions
Funding
Conflicts of Interest
References
- Bakhtin, I.A. The contraction mapping principle in almost metric space. In Functional Analysis; Ulýanovsk Gos. Ped. Inst.: Ulýanovsk, Russia, 1989; pp. 26–37. (In Russian) [Google Scholar]
- Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca 2014, 64, 941–960. [Google Scholar] [CrossRef]
- Aleksić, S.; Huang, H.; Mitrović, Z.; Radenović, S. Remarks on some fixed point results in b-metric space. J. Fixed Point Theory Appl. 2018, 20, 147. [Google Scholar] [CrossRef]
- Czerwik, S. Nonlinear Set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Ding, H.S.; Imdad, M.; Radenovi’c, S.; Vujakovi’c, J. On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab J. Math. Sci 2016, 22, 151–164. [Google Scholar]
- Dosenovi’c, T.; Pavlovi’c, M.; Radenovi’c, S. Contractive conditions in b-metric spaces. Vojnotehnicki Glasnik/Mil. Tech. Cour. 2017, 65, 851–865. [Google Scholar] [CrossRef]
- Faraji, H.; Nourouzi, K. A generalization of Kannan and Chatterjea fixed point theorems on complete b-metric spaces. Sahand Commun. Math. Anal. 2017, 6, 77–86. [Google Scholar]
- Faraji, H.; Nourouzi, K. Fixed and common fixed points for (ψ,φ)-weakly contractive mappings in b-metric spaces. Sahand Commun. Math. Anal. 2017, 7, 49–62. [Google Scholar]
- Faraji, H.; Nourouzi, K.; O’Regan, D. A fixed point theorem in uniform spaces generated by a family of b-pseudometrics. Fixed Point Theory. 2019, 20, 177–183. [Google Scholar] [CrossRef]
- Hussain, N.; Mitrović, Z.D.; Radenović, S. A common fixed point theorem of Fisher in b-metric spaces. RACSAM 2018. [Google Scholar] [CrossRef]
- Ilchev, A.; Zlatanov, B. On Fixed Points for Reich Maps in B-Metric Spaces; Annual of Konstantin Preslavski University of Shumen, Faculty of Mathematics and Computer Science VI: Shumen, Bulgaria, 2016; pp. 77–88. [Google Scholar]
- Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010, 2010, 978121. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Hussain, N. KKM mappings in metric type spaces. Nonlinear Anal. 2010, 73, 3123–3129. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Berlin, Germany, 2014. [Google Scholar]
- Koleva, R.; Zlatanov, B. On fixed points for Chatterjeas maps in b-metric spaces. Turk. J. Anal. Number Theory 2016, 4, 31–34. [Google Scholar]
- Miculsecu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A note on the results of Suzuki, Miculescu and Mihail. J. Fixed Point Theory Appl. 2019, 21, 24. [Google Scholar] [CrossRef]
- Roshan, J.R.; Parvaneh, V.; Altun, I. Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations. Appl. Math. Comput. 2014, 226, 725–737. [Google Scholar]
- Sing, S.L.; Czerwik, S.; Krol, K.; Singh, A. Coincidences and fixed points of hybrid contractions. Tamsui Oxf. J. Math. Sci. 2008, 24, 401–416. [Google Scholar]
- Suzuki, T. Basic inequality on a b-metric space and its applications. J. Inequal. Appl. 2017, 2017, 256. [Google Scholar] [CrossRef] [PubMed]
- Zoto, K.; Rhoades, B.; Radenović, S. Common fixed point theorems for a class of (s, q)-contractive mappings in b-metric-like spaces and applications to integral equations. Math. Slovaca 2019, 69, 233–247. [Google Scholar] [CrossRef]
- Mitrović, Z.D.; Hussain, N. On weak quasicontractions in b-metric spaces. Publ. Math. Debrecen 2019, 94, 29. [Google Scholar]
- Geraghty, M.A. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [Google Scholar] [CrossRef]
- Dukic, D.; Kadelburg, Z.; Radenović, S. Fixed points of Geraghty-type mappings in various generalized metric spaces. Abstr. Appl. Anal. 2011, 2011, 561245. [Google Scholar] [CrossRef]
- Shahkoohi, R.J.; Razani, A. Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces. J. Inequal. Appl. 2014, 2014, 373. [Google Scholar] [CrossRef]
- Huang, H.; Paunović, L.; Radenović, S. On some fixed point results for rational Geraghty contractive mappings in ordered b-metric spaces. J. Nonlinear Sci. Appl. 2015, 8, 800–807. [Google Scholar] [CrossRef]
- Hussain, N.; Roshan, J.R.; Parvaneh, V.; Abbas, M. Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications. J. Inequal. Appl. 2013, 2013, 486. [Google Scholar] [CrossRef]
- Ishak, A.; Kishin, S. Generalized Geraghty type mappings on partial metric spaces and fixed point results. Arab. J. Math. 2013, 2, 247–253. [Google Scholar] [Green Version]
- Zabihi, F.; Razani, A. Fixed point theorems for Hybrid Rational Geraghty Contractive Mappings in orderd b-Metric spaces. J. Appl. Math. 2014, 2014, 929821. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faraji, H.; Savić, D.; Radenović, S. Fixed Point Theorems for Geraghty Contraction Type Mappings in b-Metric Spaces and Applications. Axioms 2019, 8, 34. https://doi.org/10.3390/axioms8010034
Faraji H, Savić D, Radenović S. Fixed Point Theorems for Geraghty Contraction Type Mappings in b-Metric Spaces and Applications. Axioms. 2019; 8(1):34. https://doi.org/10.3390/axioms8010034
Chicago/Turabian StyleFaraji, Hamid, Dragana Savić, and Stojan Radenović. 2019. "Fixed Point Theorems for Geraghty Contraction Type Mappings in b-Metric Spaces and Applications" Axioms 8, no. 1: 34. https://doi.org/10.3390/axioms8010034
APA StyleFaraji, H., Savić, D., & Radenović, S. (2019). Fixed Point Theorems for Geraghty Contraction Type Mappings in b-Metric Spaces and Applications. Axioms, 8(1), 34. https://doi.org/10.3390/axioms8010034