A New gH-Difference for Multi-Dimensional Convex Sets and Convex Fuzzy Sets
Abstract
:1. Introduction
2. The Space of Compact Convex Sets
- P1.
- ;
- P1.
- ;
- P3.
- .
3. A General Difference of Compact Convex Sets
The New Difference
4. Computation of the New Difference
Computing the Difference in
5. Extension to Convex Fuzzy Sets
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Markov, S. A non-standard subtraction of intervals. Serdica 1977, 3, 359–370. [Google Scholar]
- Markov, S. Extended interval arithmetic. Compt. Rend. Acad. Bulg. Sci. 1977, 30, 1239–1242. [Google Scholar]
- Markov, S. Calculus for interval functions of a real variable. Computing 1979, 22, 325–377. [Google Scholar] [CrossRef]
- Markov, S. On the Algebra of Intervals and Convex Bodies. J. Univers. Comput. Sci. 1998, 4, 34–47. [Google Scholar]
- Hukuhara, M. Integration des applications measurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 1967, 10, 205–223. [Google Scholar]
- Pontryagin, L.S. On linear differential games, II. Sov. Math. Dokl. 1967, 8, 910–912. [Google Scholar]
- Demyanov, V.F.; Rubinov, A.M. Constructive Nonsmooth Analysis; Peter Lang: Frankfurt, Germany, 1995. [Google Scholar]
- Gao, Y. Demyanov difference of two sets and optimality conditions of Lagrange multiplier type for constrained quasidifferentiable optimization. J. Optim. Theory Appl. 2000, 104, 377–394. [Google Scholar] [CrossRef]
- Mordukhovich, B.S. Variational Analysis and Generalized Differentiation I: Basic Theory; Springer: Berlin, Germany, 2006. [Google Scholar]
- Mordukhovich, B.S. Variational Analysis and Generalized Differentiation II: Applications; Springer: Berlin, Germany, 2006. [Google Scholar]
- Penot, J.-P. On the minimization of difference functions. J. Glob. Optim. 1998, 12, 373–382. [Google Scholar] [CrossRef]
- Stefanini, L. A generalization of Hukuhara-difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 2010, 161, 1564–1584. [Google Scholar] [CrossRef]
- Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic; Studies in Fuzziness and Soft Computing Series n. 295; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bede, B.; Stefanini, L. Generalized differentiability of fuzzy valued functions. Fuzzy Sets Syst. 2013, 230, 119–141. [Google Scholar] [CrossRef]
- Stefanini, L.; Bede, B. Generalized fuzzy differentiability with LU-parametric representation. Fuzzy Sets Syst. 2014, 257, 184–203. [Google Scholar] [CrossRef]
- Stefanini, L.; Arana-Jimenez, M. Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability. Fuzzy Sets Syst. 2019, 362, 1–34. [Google Scholar] [CrossRef]
- Baier, R.; Farkhi, E. Differences of Convex Compact Sets in the Space of Directed Sets, Part I: The Space of Directed Sets. Set-Valued Anal. 2001, 9, 217–245. [Google Scholar] [CrossRef]
- Baier, R.; Farkhi, E. Differences of Convex Compact Sets in the Space of Directed Sets, Part II: Visualization of Directed Sets. Set-Valued Anal. 2001, 9, 247–272. [Google Scholar] [CrossRef]
- Baier, R.; Farkhi, E.; Roshchina, V. The directed and Rubinov subdifferentials of quasidifferentiable functions, Part I: Definition and examples. Nonlinear Anal. 2012, 75, 1074–1088. [Google Scholar] [CrossRef]
- Baier, R.; Farkhi, E.; Roshchina, V. The directed and Rubinov subdifferentials of quasidifferentiable functions, Part II: Calculus. Nonlinear Anal. 2012, 75, 1058–1073. [Google Scholar] [CrossRef]
- Pallaschke, D.; Urbanski, R. Pairs of Compact Convex Sets, Fractional Arithmetic with Convex Sets; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Banks, H.T.; Jacobs, M.Q. A differential calculus for multifunctions. J. Math. Anal. Appl. 1970, 29, 246–272. [Google Scholar] [CrossRef]
- Radstrom, H. An embedding theorem for spaces of convex sets. Proc. Am. Math. Soc. 1952, 3, 165–169. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Bede, B.; Stefanini, L. Solution of fuzzy differential equations with generalized differentiability using LU-parametric representation. In Proceedings of the EUSFLAT/LFA 2011 Conference, Aix-Les-Bains, France, 18-22 July 2011; Galichet, S., Montero, J., Mauris, G., Eds.; Atlantis Press: Paris, France, 2011; Volume 1, pp. 785–790. [Google Scholar]
- Buckley, J.J.; Qu, Y. Solving linear and quadratic fuzzy equations. Fuzzy Sets Syst. 1990, 38, 43–61. [Google Scholar] [CrossRef]
- Buckley, J.J.; Qu, Y. Solving fuzzy equations: A new solution concept. Fuzzy Sets Syst. 1991, 39, 291–303. [Google Scholar] [CrossRef]
- Buckley, J.J.; Qu, Y. Solving systems of linear fuzzy equations. Fuzzy Sets Syst. 1991, 43, 33–43. [Google Scholar] [CrossRef]
- Buckley, J.J. Solving fuzzy equations. Fuzzy Sets Sys. 1992, 50, 1–14. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy set-theoretic differences and inclusions and their use in the analysis of fuzzy equations. Control Cybern. 1984, 13, 129–146. [Google Scholar]
- Laksmikantham, V.; Mohapatra, R.N. Theory of Fuzzy Differential Equations and Inclusions; Taylor and Francis: New York, NY, USA, 2003. [Google Scholar]
- Malinowski, M.T. Bipartite Fuzzy Stochastic Differential Equations with Global Lipschitz Condition. Math. Probl. Eng. 2016, 2016, 3830529. [Google Scholar] [CrossRef]
- Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval valued functions and interval differential equations. Nonlinear Anal. 2009. [Google Scholar] [CrossRef]
- Stefanini, L.; Bede, B. Some Notes on Generalized Hukuhara Differentiability of Interval Valued Functions and Interval Differential Equations; EMS Working Paper Series; Faculty of Economics: Urbino, Italy, 2012; Available online: http://ideas.repec.org/f/pst233.html (accessed on 16 March 2019).
- Wang, C.; Agarwal, R.P.; O’Regan, D. Calculus of fuzzy vector-valued functions and almost periodic fuzzy vector-valued functions on time scales. Fuzzy Sets Syst. 2018. [Google Scholar] [CrossRef]
- Stefanini, L. Computational Procedures for the Difference of Compact Convex Sets; EMS Working Paper Series; Faculty of Economics: Urbino, Italy, in preparation.
- Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets; World Scientific: Singapore, 1994. [Google Scholar]
- Diamond, P.; Koerner, R. Extended fuzzy linear models and least squares estimates. Comput. Math. Appl. 1997, 33, 15–32. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.; Rubinov, A.; Vladimirov, A. Comparative properties of three metrics in the space of compact convex sets. Set-Valued Anal. 1997, 5, 267–289. [Google Scholar] [CrossRef]
- Schneider, R. Convex Bodies: The Brunn-Minkowski Theory; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Markov, S. On the algebraic properties of convex bodies and some applications. J. Convex Anal. 2000, 7, 129–166. [Google Scholar]
- Stefanini, L. On the generalized LU-fuzzy derivative and fuzzy differential equations. In Proceedings of the FUZZIEEE 2007 Conference, London, UK, 23–26 July 2007; Available online: http://ideas.repec.org/f/pst233.html (accessed on 16 March 2019). [CrossRef]
- Martinez-Legaz, J.-E.; Penot, J.-P. Regularization by erasement. Math. Scand. 2006, 98, 97–124. [Google Scholar] [CrossRef]
- Rubinov, A.M.; Akhundov, I.S. Difference of compact sets in the sense of Demyanov and its application to nonsmooth analysis. Optimization 1992, 23, 179–188. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. Concept of a linguistic variable and its application to approximate reasoning, I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhauser-Verlag: Boston, MA, USA, 1990. [Google Scholar]
- Rockafellar, R.T. Convex Analysis; Princeton Univ. Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Rockafellar, R.T.; Wets, R.J.-B. Variational Analysis; Springer: Berlin, Germany, 1998. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanini, L.; Bede, B. A New gH-Difference for Multi-Dimensional Convex Sets and Convex Fuzzy Sets. Axioms 2019, 8, 48. https://doi.org/10.3390/axioms8020048
Stefanini L, Bede B. A New gH-Difference for Multi-Dimensional Convex Sets and Convex Fuzzy Sets. Axioms. 2019; 8(2):48. https://doi.org/10.3390/axioms8020048
Chicago/Turabian StyleStefanini, Luciano, and Barnabas Bede. 2019. "A New gH-Difference for Multi-Dimensional Convex Sets and Convex Fuzzy Sets" Axioms 8, no. 2: 48. https://doi.org/10.3390/axioms8020048
APA StyleStefanini, L., & Bede, B. (2019). A New gH-Difference for Multi-Dimensional Convex Sets and Convex Fuzzy Sets. Axioms, 8(2), 48. https://doi.org/10.3390/axioms8020048