Groups, Special Functions and Rigged Hilbert Spaces
Abstract
:1. Introduction
2. Rigged Hilbert Spaces
- A proper definition of some of the structures that appear in the axiomatic theory of quantum fields, such as Wightman functional, Borchers algebra, generalized states, etc., require of structures such as the rigged Fock space [39,40,41]. Both rigged Liouville and Fock spaces are obvious generalizations of RHS.
- In the last years, the RHS have appeared associated to time-frequency analysis and Gabor analysis that have many applications in physics and engineering related to signal processing [45,46,47,48,49,50,51,52]. In particular, applications in electrical engineering have been introduced in [53,54,55,56].
- For any , then, . One says that reduces or, equivalently, that leaves invariant, so that . Note that we do not assume that , in general.
- The adjoint is continuous on .
- 1.
- and A is continuous on Φ. Therefore, it may be continuously extended to .
- 2.
- For almost all , with respect to the Lebesgue measure, there exists a with .
- 3.
- (Spectral decomposition) For any pair of vectors , and any measurable function , we have that
- 4.
- The above spectral decomposition is implemented by a unitary operator , with and for any . This means that is the multiplication operator on .
- 5.
- For any pre-existent RHS , such that with continuity and A is an operator satisfying our hypothesis, then items 2–4 hold.
3. SO(2): The Basic Example
3.1. Rigged Hilbert Spaces Associated to
3.2. About Representations of
4. and Associated Laguerre Functions
4.1. Associated Laguerre Functions
4.2. Associated Laguerre Functions on the Plane
4.3. Rigged Hilbert Spaces Associated to
5. Weyl–Heisenberg Group and Hermite Functions
5.1. Continuous and Discrete Bases and RHS
- The Schwartz space S of all complex indefinitely differentiable functions of the real variable , such as they and all their derivatives at all orders go to zero at the infinity faster than the inverse of any polynomial. The Schwartz space S is endowed with a metrizable locally convex topology [15]. It is well known that S is the first element of a RHS . Note that the Fourier transform leaves this triplet invariant.
- An abstract infinite dimensional separable Hilbert space along a fixed, although arbitrary, unitary operator . If and we transport the locally convex topology from S to by , we have a second RHS , unitarily equivalent to .
- For any and any , we define , where , so that . Analogously, for any , we define
- Define and , for all , where the prime means derivative. Let and . Then, for given , , so that , which implies that . We use the same notation for Q and its extension to . Analogously, , for any .
- Since U is unitary, it preserves scalar products, so that, for arbitrary , we have
- The conclusion of the above paragraph is that both sets of vectors and form a continuous basis for the vectors in . In addition, we have a discrete basis on defined as
- Analogously, in the momentum representation, we have that
5.2. The Weyl–Heisenberg Lie Algebra
6. The Group SO(3,2) and the Spherical Harmonics
6.1. RHS Associated to the Spherical Harmonics
6.2. Continuous Bases Depending on the Angular Variables
- For any , we can define the operator . One has that and is continuous on . Therefore, we may define , which is a symmetric continuous linear operator on and, hence, can be extended into the anti-dual by the duality formula in Equation (7). For almost all , , we can prove that
- Analogously, if we define the operator on as and , we have that
- Let . Their scalar product isThen, we may write the following formal identity:We give below the meaning of this .
6.3. Continuity of the Generators of
7. The Lie Algebra and Laguerre Functions
7.1. Symmetries of the Laguerre Functions
7.2. RHS and Continuous Bases
- For each , we have the decomposition
- Vectors in the discrete and continuous basis are related by
- If, in addition, we omit the arbitrary ket in Equation (146), we obtain the following identity,
8. The Lie Algebra and Algebraic Jacobi Functions
8.1. Algebraic Jacobi Functions
8.2. Symmetries of the Algebraic Jacobi Functions
8.3. Algebraic Jacobi Functions on the Hypersphere
8.4. RHS Associated to the Algebraic Jacobi Functions
8.5. Continuity of the Operators
8.6. Discrete and Continuous Basis
9. su(1,1)⊕su(1,1), Zernike Functions and RHS
9.1. W-Zernike Functions
- They are square integrable on , so that they belong to the Hilbert space .
- They fulfill some symmetry relations such as
- They are orthonormal on :
- A completeness relation holds:
- The fact that Zernike polynomials are bounded, , on the interval , implies an interesting upper bound for the W-Zernike functions:
9.2. Rigged Hilbert Spaces and W-Zernike Functions
9.3. Continuity of Relevant Operators Acting on the W-Zernike Functions
9.4. Continuous Bases and RHS
10. Concluding Remarks
Funding
Conflicts of Interest
References
- Fourier, J.B.J. Théorie Analytique de la Chaleur; F. Didot: Paris, France, 1822. [Google Scholar]
- Folland, G.B. Fourier Analysis and Its Applications; Wadsworth Inc.: Belmont, CA, USA, 1992. [Google Scholar]
- Folland, G.B. A Course in Abstract Harmonic Analysis; CRC Press Inc.: Boca Raton, FL, USA, 1995. [Google Scholar]
- Trapani, C.; Triolo, S.; Tschinke, F. Distribution frames and bases. J. Fourier Anal. Appl. 2019, 25, 2109–2140. [Google Scholar] [CrossRef]
- Ozaktas, H.M.; Zalevsky, Z.; Alper Kutay, M. The Fractional Fourier Transform; Wiley: Chichester, UK, 2001. [Google Scholar]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Hermite Functions, Lie Groups and Fourier Analysis. Entropy 2018, 20, 816. [Google Scholar] [CrossRef]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Hermite Functions and Fourier Series. 2019. in preparation. [Google Scholar]
- Kennedy, R.A.; Sadeghi, P. Hilbert Space Methods in Signal Processing; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ramamoorthi, R.; Hanrahan, P. An efficient representation for irradiance environment maps. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’01), Los Angeles, CA, USA, 12–17 August 2001; ACM: New York, NY, USA, 2001; pp. 117–128. [Google Scholar]
- Mahajan, D.; Ramamoorthi, R.; Curless, B. A theory of frequency domain invariants: spherical harmonic identities for BRDF/lighting transfer and image consistency. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Zernike, F. Inflection theory of the cutting method and its improved form, the phase contrast method. Physica 1934, 1, 689–704. [Google Scholar] [CrossRef]
- Mahajan, V.N.; Aftab, M. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts, case where the circle coefficients. Appl. Opt. 2010, 49, 6489–6501. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayanana, V.; Fleck, A. Zernike polynomials: A guide. J. Mod. Opt. 2011, 58, 545–561. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Vilenkin, N.Y. Generalized Functions: Applications to the Harmonic Analysis; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Reed, M.; Simon, B. Functional Analysis; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Bohm, A. The Rigged Hilbert Space and Quantum Mechanics; Lecture Notes in Physics 78; Springer: Berlin, Germany, 1978. [Google Scholar]
- Roberts, J.E. Rigged Hilbert spaces in quantum mechanics. Commun. Math. Phys. 1966, 2, 98–119. [Google Scholar] [CrossRef]
- Antoine, J.P. Dirac formalism and symmetry problems in quantum mechanics. I. General Dirac formalism. J. Math. Phys. 1969, 10, 53–69. [Google Scholar] [CrossRef]
- Melsheimer, O. Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory. J. Math. Phys. 1973, 15, 902–916. [Google Scholar] [CrossRef]
- Gadella, M.; Gómez, F. A unified mathematical formalism for the Dirac formulation of quantum mechanics. Found. Phys. 2002, 32, 815–869. [Google Scholar] [CrossRef]
- Gadella, M.; Gómez, F. On the mathematical basis of the Dirac formulation of Quantum Mechanics. Int. J. Theor. Phys. 2003, 42, 2225–2254. [Google Scholar] [CrossRef]
- Gadella, M.; Gómez-Cubillo, F. Eigenfunction Expansions and Transformation Theory. Acta Appl. Math. 2010, 109, 721–742. [Google Scholar] [CrossRef]
- Bohm, A. Decaying states in the rigged Hilbert space formulation of quantum mechanics. J. Math. Phys. 1979, 21, 2813–2823. [Google Scholar]
- Bohm, A. Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics. J. Math. Phys. 1980, 22, 2813–2823. [Google Scholar] [CrossRef]
- Bohm, A.; Gadella, M. Dirac Kets, Gamow Vectors and Gelfand Triplets; Lecture Notes in Physics 348; Springer: Berlin, Germany, 1989. [Google Scholar]
- Civitarese, O.; Gadella, M. Physical and Mathematical Aspects of Gamow States. Phys. Rep. 2004, 396, 41–113. [Google Scholar] [CrossRef]
- Gadella, M. A rigged Hilbert space of Hardy class functions: Applications to resonances. J. Math. Phys. 1983, 24, 1462–1469. [Google Scholar] [CrossRef]
- Bohm, A. Time-asymmetric quantum physics. Phys. Rev. A 1999, 50, 861–876. [Google Scholar] [CrossRef]
- Bohm, A.; Harshman, N.L.; Kaldass, H.; Wickramasekara, S. Time asymmetric quantum theory and the ambiguity of the Z-boson mass and width. Eur. Phys. J. C 2000, 18, 333–342. [Google Scholar] [CrossRef]
- Bohm, A.; Loewe, M.; Van de Ven, B. Time asymmetric quantum theory—I. Modifying an axiom of quantum physics. Fort. Phys. 2003, 51, 551–568. [Google Scholar] [CrossRef]
- Bohm, A.; Kaldass, H.; Wickramasekara, S. Time asymmetric quantum theory—II. Relativistic resonances from S-matrix poles. Fort. Phys. 2003, 51, 569–603. [Google Scholar] [CrossRef]
- Bohm, A.; Kaldass, H.; Wickramasekara, S. Time asymmetric quantum theory—III. Decaying states and the causal Poincaré semigroup. Fort. Phys. 2003, 51, 604–634. [Google Scholar] [CrossRef]
- Bohm, A.; Gadella, M.; Kielanowski, P. Time asymmetric quantum mechanics. SIGMA 2011, 8, 086. [Google Scholar] [CrossRef]
- Antoniou, I.E.; Tasaki, S. Generalized spectral decompositions of mixing dynamical systems. Int. J. Quantum Chem. 1993, 46, 425–474. [Google Scholar] [CrossRef]
- Antoniou, I.E.; Tasaki, S. Generalized spectral decomposition of the β-adic baker’s transformation and intrinsic irreversibility. Phys. A Stat. Mech. Appl. 1992, 190, 303–329. [Google Scholar] [CrossRef]
- Antoniou, I.E.; Gadella, M.; Suchanecki, Z. General properties of the Liouville operator. Int. J. Theor. Phys. 1998, 37, 1641–1654. [Google Scholar] [CrossRef]
- Antoniou, I.E.; Gadella, M.; Suchanecki, Z. Some general properties of Liouville Spaces. In Irreversibility and Causality; Bohm, A., Doebner, H.D., Kielanowski, P., Eds.; Lecture Notes in Physics 504; Springer: Berlin, Germany, 1998; pp. 38–56. [Google Scholar]
- Antoniou, I.E.; Gadella, M. Irreversibility, resonances and rigged Hilbert spaces. In Irreversible Quantum Dynamics; Benatti, F., Floreanini, R., Eds.; Lecture Notes in Physics 622; Springer: Berlin, Germany, 2003; pp. 245–302. [Google Scholar]
- Bogolubov, N.N.; Logunov, A.A.; Todorov, I.T. Introduction to Axiomatic Quantum Field Theory; Benjamin: Reading, MA, USA, 1975. [Google Scholar]
- Antoniou, I.E.; Gadella, M.; Prigogine, I.; Pronko, G.P. Relativistic Gamow vectors. J. Math. Phys. 1998, 39, 2995–3018. [Google Scholar] [CrossRef]
- Gadella, M. A RHS for the free radiation field. J. Math. Phys. 1985, 26, 725–727. [Google Scholar] [CrossRef]
- Hida, T. Stationary Stochastic Processes; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Hida, T. Brownian Motion; Springer: Berlin, Germany, 1980. [Google Scholar]
- Hormander, L. The Analysis of Partial Differential Equations I: Distribution Theory and Fourier Analysis, 2nd ed.; Springer: Berlin, Germany, 1990. [Google Scholar]
- Feichtinger, H.G.; Zimmermann, G. A Banach space of test functions for Gabor analysis. In Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis; Feichtinger, H.G., Strohmer, T., Eds.; Birkhäuser: Boston, MA, USA, 1998; pp. 123–170. [Google Scholar]
- Cordero, E.; Feichtinger, H.G.; Luef, F. Banach Gelfand triples for Gabor analysis. In Pseudo-Differential Operators; Lecture Notes in Mathematics 949; Springer: Berlin, Germany, 2008; pp. 1–33. [Google Scholar]
- Feichtinger, H.G. Banach Gelfand triples for applications in physics and engineering. In Proceedings of the AIP Conference Proceedings, Agra, India, 14–16 January 2009; Volume 1146, pp. 189–228. [Google Scholar]
- Bannert, S. Banach-Gelfand Triples and Applications in Time-Frequency Analysis. Master’s Thesis, University of Vienna, Vienna, Austria, 2010. [Google Scholar]
- Feichtinger, H.G.; Jakobsen, M.S. The inner kernel theorem for a certain Segal algebra. arXiv 2018, arXiv:1806.06307. [Google Scholar]
- Feichtinger, H.G. Banach Gelfand Triples and some Applications in Harmonic Analysis. In Proceedings of the Conference Harmonic Analysis, Abidjan, Côte d’Ivoire, 23–26 May 2018. [Google Scholar]
- Feichtinger, H.G.; Jakobsen, M.S. Distribution theory by Riemann integrals. arXiv 2019, arXiv:1810.04420. [Google Scholar]
- Feichtinger, H.G.; Franz Luef, L.; Jakobsen, S.M. Banach Gelfand Triples for analysis. Notices Am. Math. Soc. 2019, in press. [Google Scholar]
- Heredia-Juesas, J.; Gago-Ribas, E. A new view of spectral analysis of linear systems. In Progress in Electromagnetics Research Symposium, Proceedings of the PIERS 2012, Kuala Lumpur, Malaysia, 27–30 March 2012; Electromagnetics Acad: Cambridge, MA, USA, 2012. [Google Scholar]
- Heredia-Juesas, J.; Gago-Ribas, E.; Ganoza-Quintana, J.L. A new version of a generalized signals & systems scheme to parameterize and analyze physical problems. In Proceedings of the 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA), Palm Beach, The Netherlands, 3–8 August 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Heredia-Juesas, J.; Gago-Ribas, E.; Vidal-García, P. Application of the rigged Hilbert spaces into the generalized signals & systems theory. In Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 7–11 September 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Heredia-Juesas, J.; Gago-Ribas, E.; Vidal-García, P. Application of the Rigged Hilbert Spaces into the Generalized Signals and Systems Theory: Practical Example. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Parravicini, G.; Gorini, V.; Sudarshan, E.C.G. Resonances, scattering theory, and rigged Hilbert spaces. J. Math. Phys. 1980, 21, 2208–2226. [Google Scholar] [CrossRef]
- Costin, O.; Soffer, A. Resonance theorey for Schrödinger operators. Commun. Math. Phys. 2001, 224, 133–152. [Google Scholar] [CrossRef]
- De la Madrid, R. Rigged Hilbert space approach to the Schrödinger equation. J. Phys. A Math. Gen. 2002, 35, 319–342. [Google Scholar] [CrossRef]
- Baumgártel, H. Generalized Eigenvectors for Resonances in the Friedrichs Model and Their Associated Gamov Vectors. Rev. Math. Phys. 2006, 18, 61–78. [Google Scholar] [CrossRef]
- Bellomonte, G.; Trapani, C. Rigged Hilbert spaces and contractive families of Hilbert spaces. Monatshefte Math. 2011, 164, 271–285. [Google Scholar] [CrossRef]
- Bellomonte, G.; di Bella, S.; Trapani, C. Operators in rigged Hilbert spaces: some spectral properties. J. Math. Anal. Appl. 2014, 411, 931–946. [Google Scholar] [CrossRef]
- Chiba, H. A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions. Adv. Math. 2015, 273, 324–379. [Google Scholar] [CrossRef]
- Chiba, H. A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions II: Applications to Schrödinger operators. Kyushu J. Math. 2018, 72, 375–405. [Google Scholar] [CrossRef]
- Maurin, K. General Eiegenfunction Expansions and Unitary Representations of Topological Groups; Polish Scientific Publisheres: Warsaw, Poland, 1968. [Google Scholar]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Lie algebra representations and rigged Hilbert spaces: The SO(2) case. Acta Polytech. 2017, 56, 379–384. [Google Scholar] [CrossRef]
- Celeghini, E.; del Olmo, M.A. Group theoretical aspects of and the associated Laguerre polynomials. In Physical and Mathematical Aspects of Symmetries; Duarte, S., Gazeau, J.P., Faci, S., Micklitz, T., Scherer, R., Toppan, F., Eds.; Springer: New York, NY, USA, 2017; pp. 133–138. [Google Scholar]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. SU(2), Associated Laguerre Polynomials and Rigged Hilbert Spaces. In Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics; Springer Proceedings in Mathematics & Statistics; Dobrev, V., Ed.; Springer: Berlin, Germany, 2018; Volume 2, pp. 373–383. [Google Scholar]
- Szegö, G. Orthogonal Polynomials; American Mathematical Society: Providence, RI, USA, 2003. [Google Scholar]
- Abramovich, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York, NY, USA, 1972. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisiert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Durán, J.A. A bound on the Laguerre polynomials. Studia Math. 1991, 100, 169–181. [Google Scholar] [CrossRef]
- Antoine, J.P.; Grossmann, A. Partial inner product spaces 1. General properties. J. Funct. Anal. 1976, 23, 369–378. [Google Scholar] [CrossRef]
- Antoine, J.P.; Grossmann, A. Partial inner product spaces 2. Operators. J. Funct. Anal. 1976, 23, 379–391. [Google Scholar] [CrossRef]
- Antoine, J.P.; Trapani, C. Partial Inner Product Spaces: Theory and Applications; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2009; Volume 1986. [Google Scholar]
- Antoine, J.P.; Trapani, C. PIP-Space Valued Reproducing Pairs of Measurable Functions. Axioms 2019, 8, 52. [Google Scholar] [CrossRef]
- Cohen-Tanudji, C.; Diu, B.; Laloe, F. Quantum Mechanics; Wiley: NewYork, NY, USA; Hermann: Paris, France, 1991. [Google Scholar]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Applications of Rigged Hilbert Spaces in Quantum Mechanics and Signal Procesing. J. Math. Phys. 2016, 57, 072105. [Google Scholar] [CrossRef]
- Celeghini, E.; del Olmo, M.A. Coherent orthogonal polynomials. Ann. Phys. 2013, 335, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Celeghini, E.; del Olmo, M.A. Algebraic special functions and SO(3, 2). Ann. Phys. 2013, 333, 90–103. [Google Scholar] [CrossRef]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Spherical Harmonics and Rigged Hilbert Spaces. J. Math. Phys. 2015, 59, 053502. [Google Scholar] [CrossRef]
- Atkinson, K.; Hang, W. Spherical Harmonics Approximations on the Unit Sphere; Springer: Berlin, Germany, 2012. [Google Scholar]
- Celeghini, E.; del Olmo, M.A.; Velasco, M.A. Lie groups, algebraic special functions and Jacobi polynomials. J. Phys. Conf. Ser. 2015, 597, 012023. [Google Scholar] [CrossRef] [Green Version]
- Celeghini, E.; del Olmo, M.A.; Velasco, M.A. Jacobi polynomials as infinite-dimensional irreducible representation of su(2; 2). In Integrability, Supersymmetry and Coherent States; Kuru, S., Ed.; Springer: Berlin, Germany, 2019. [Google Scholar]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Groups, Jacobi Functions and Rigged Hilbert Spaces. arXiv 2019, arXiv:1907.01281. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Celeghini, E.; Gadella, M.; del Olmo, M.A. Zernike functions, rigged Hilbert spaces and potential applications. arXiv 2019, arXiv:1902.08017. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celeghini, E.; Gadella, M.; del Olmo, M.A. Groups, Special Functions and Rigged Hilbert Spaces. Axioms 2019, 8, 89. https://doi.org/10.3390/axioms8030089
Celeghini E, Gadella M, del Olmo MA. Groups, Special Functions and Rigged Hilbert Spaces. Axioms. 2019; 8(3):89. https://doi.org/10.3390/axioms8030089
Chicago/Turabian StyleCeleghini, Enrico, Manuel Gadella, and Mariano A. del Olmo. 2019. "Groups, Special Functions and Rigged Hilbert Spaces" Axioms 8, no. 3: 89. https://doi.org/10.3390/axioms8030089
APA StyleCeleghini, E., Gadella, M., & del Olmo, M. A. (2019). Groups, Special Functions and Rigged Hilbert Spaces. Axioms, 8(3), 89. https://doi.org/10.3390/axioms8030089