On One Interpolation Type Fractional Boundary-Value Problem
Abstract
:1. Introduction
2. Main Notations and Supplementary Statements
3. Resent Results in the Study of the Periodic and Anti-Periodic Fractional Boundary Value Problems
3.1. Integral Representation of the Solution of the PFBVP
3.2. Study of the Lower Order Fractional Differential Systems
- 1.
- Functions of the sequence (13) are continuous and satisfy periodic boundary conditions
- 2.
- The sequences of functions (13) for converge uniformly as to the appropriate limit functions
- 3.
- The limit functions , satisfy periodic boundary conditions
- 4.
- The following error estimations hold:
3.3. PFBVP with a Higher Order Caputo Type Fractional Derivative
3.4. Anti-Periodic Fractional BVP
4. Boundary-Value Problem for a Mixed FDS under the Interpolation Type Boundary Constraints
5. Parametrization Approach and the Numerical-Analytic Technique
- 1.
- 2.
- 3.
- The limit functions satisfy the initial conditions
- 4.
- The functions , , are the unique continuously differentiable solutions of the integral equationsIn other words, , , satisfy the Cauchy problem for the modified system of FDEs:
- 5.
- The following error estimate holds:
6. Main Result
7. Some Solvability and Applicability Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Cattani, C. Harmonic Wavelet Solutions of the Schrodinger Equation. Int. J. Fluid Mech. Res. 2003, 30, 463–472. [Google Scholar] [CrossRef]
- Al-Ghafri, K.S.; Rezazadeh, H. Solitons and other solutions of (3 + 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation. Appl. Math. Nonlinear Sci. 2019, 4, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Ghanbari, B.; Baskonus, H.M. New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2019, 128, 34–43. [Google Scholar] [CrossRef]
- Gao, W.; Yel, G.; Baskonus, H.M.; Cattani, C. Complex solitons in the conformable (2 + 1)-dimensional Ablowitz-Kaup-Newell-Segur equation. Aims Math. 2020, 5, 507–521. [Google Scholar] [CrossRef]
- Gao, W.; Ismael, H.F.; Mohammed, S.A.; Baskonus, H.M.; Bulut, H. Complex and real optical soliton properties of the paraxial non-linear Schrödinger equation in kerr media with M-fractional. Front. Phys. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Khan, M.A.; Hammouch, Z.; Baleanu, D. Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative. Math. Model. Nat. Phenom. 2019, 14, 311. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Yokus, A.; Gülbahar, S. Numerical solutions with linearization techniques of the fractional Harry Dym equation. Appl. Math. Nonlinear Sci. 2019, 4, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Youssef1, I.K.; El Dewaik, M.H. Solving Poisson’s equations with fractional order using haarwavelet. Appl. Math. Nonlinear Sci. 2017, 2, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. A powerful approach for fractional Drinfeld–Sokolov–Wilson equation with Mittag-Leffler law. Alex. Eng. J. 2019. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365, 345–350. [Google Scholar] [CrossRef]
- Odibat, Z.; Momani, S. Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 2008, 36, 167–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Cattani, C.; Yang, J. Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains. Entropy 2015, 17, 6753–6764. [Google Scholar] [CrossRef] [Green Version]
- Daftardar-Gejji, V.; Jafari, H. Adomian decomposition: A tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 2005, 301, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Gejji, V.D. Solving a system of nonlinear fractional differential equations using Adomain decomposition. Appl. Math. Comput. 2006, 196, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Lensic, D. The decomposition method for initial value problems. Appl. Math. Comput. 2006, 181, 206–213. [Google Scholar]
- Lensic, D. The decomposition method for Cauchy advection–diffusion problems. Appl. Math. Comput. 2005, 49, 525–537. [Google Scholar]
- Momani, S.; Odibat, Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 2007, 31, 1248–1255. [Google Scholar] [CrossRef]
- Momani, S.; Al-Khaled, K. Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 2005, 162, 1351–1365. [Google Scholar] [CrossRef]
- Jafari, H.; Tajadodi, H. He’s Variational Iteration Method for Solving Fractional Riccati Differential Equation. Int. J. Differ. Equ. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Odibat, Z.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 2006, 1, 15–27. [Google Scholar] [CrossRef]
- Guner, O.; Bekir, A. The Exp-function method for solving nonlinear space–time fractional differential equations in mathematical physics. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 24, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Fečkan, M.; Marynets, K. Approximation approach to periodic BVP for fractional differential systems. Eur. Phys. J. Spec. Top. 2017, 226, 3681–3692. [Google Scholar] [CrossRef]
- Fečkan, M.; Marynets, K. Approximation approach to periodic BVP for mixed fractional differential systems. J. Comput. Appl. Math. 2018, 339, 208–217. [Google Scholar] [CrossRef]
- Fečkan, M.; Marynets, K.; Wang, J.R. Periodic boundary value problems for higher order fractional differential systems. Math. Methods Appl. Sci. 2019, 42, 3616–3632. [Google Scholar] [CrossRef]
- Marynets, K. Solvability analysis of a special type fractional differential system. Comput. Appl. Math. 2019, 39, 3. [Google Scholar] [CrossRef]
- Marynets, K. On construction of the approximate solution of the special type integral boundary-value problem. Electron. J. Qual. Theory Differ. Equ. 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Ronto, M.; Varha, Y.; Marynets, K. Further results on the investigation of solutions of integral boundary value problems. Tatra Mt. Publ. 2015, 63, 247–267. [Google Scholar] [CrossRef] [Green Version]
- Ronto, M.I.; Marynets’, K.V. On the parametrization of boundary-value problems with two-point nonlinear boundary conditions. Nonlinear Oscil. 2012, 14, 379–413. [Google Scholar] [CrossRef]
- Ronto, M.; Samoilenko, A.M. Numerical-Analytic Methods in the Theory of Boundary-Value Problems; World Scientific: Singapore, 2000. [Google Scholar]
- Wang, J.R.; Fečkan, M.; Zhou, Y. A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2016, 19, 806–831. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marynets, K. On One Interpolation Type Fractional Boundary-Value Problem. Axioms 2020, 9, 13. https://doi.org/10.3390/axioms9010013
Marynets K. On One Interpolation Type Fractional Boundary-Value Problem. Axioms. 2020; 9(1):13. https://doi.org/10.3390/axioms9010013
Chicago/Turabian StyleMarynets, Kateryna. 2020. "On One Interpolation Type Fractional Boundary-Value Problem" Axioms 9, no. 1: 13. https://doi.org/10.3390/axioms9010013
APA StyleMarynets, K. (2020). On One Interpolation Type Fractional Boundary-Value Problem. Axioms, 9(1), 13. https://doi.org/10.3390/axioms9010013