A Proof of Komlós Theorem for Super-Reflexive Valued Random Variables
Abstract
:1. Introduction
2. Notations and Preliminaries
3. About the Geometry of Banach Spaces
4. Proof of Komlós Theorem in Super-Reflexive Banach Spaces
- 1.
- weakly in , for each ,
- 2.
- converges μ-a.e. and strongly in ,
- 3.
- ,
- 4.
- The sequence converges -a.e. to some limit .
Author Contributions
Funding
Conflicts of Interest
References
- Mauldin, R.D. The Scottish Book, Birkhäuser; Springer: New York, NY, USA, 1979. [Google Scholar]
- Révész, P. On a problem of Steinhaus. Acta Math. Hung. 1965, 16, 3–4. [Google Scholar]
- Komlós, J. A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hung. 1967, 18, 217–229. [Google Scholar] [CrossRef]
- Garling, D.J.H. Subsequence principles for vector-valued random variables. Math. Proc. Camb. Philos. Soc. 1979, 86, 301–312. [Google Scholar] [CrossRef]
- Balder, E.J. Infinite-dimensional extension of a theorem of Komlós. Probab. Theory Relat. Fields 1989, 81, 185–188. [Google Scholar] [CrossRef]
- Chakraborty, N.D.; Choudhury, T. Convergence theorems for Pettis integrable functions and regular methods of summability. J. Math. Anal. Appl. 2009, 359, 95–105. [Google Scholar] [CrossRef]
- Emelyanov, E.Y.; Erkurşun-Özcan, N.; Gorokhova, S.G. Komlós properties in Banach lattices. Acta Math. Hung. 2018, 155, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Fernández, E.J.; Juan, M.A.; Pérez, E.S. A Komlós theorem for abstract Banach lattices of measurable functions. J. Math. Anal. Appl. 2011, 383, 130–136. [Google Scholar] [CrossRef]
- Gao, N.; Troitsky, V.G.; Xanthos, F. Uo-convergence and its applications to Cesàro means in Banach lattices. Isr. J. Math. 2017, 220, 649–689. [Google Scholar] [CrossRef]
- Cassese, G. A Version of Komlós Theorem for Additive Set Functions. Sankhya Indian J. Stat. 2016, 78, 105–123. [Google Scholar] [CrossRef]
- Lennard, C. A converse to a theorem of Komlós for convex subsets of L1. Pac. J. Math 1993, 159, 75–85. [Google Scholar] [CrossRef]
- Dehaj, A.; Guessous, M. Permutation-Invariance in Komlós’ Theorem for Hilbert-Space Valued Random Variables. J. Convex Anal. 2021, 28. [Google Scholar]
- Guessous, M. An Elementary Proof of Komlós-Revesz Theorem in Hilbert Spaces. J. Convex Anal. 1997, 4, 321–332. [Google Scholar]
- Xu, H.K. Inequalities in Banach spaces with applications. Nonlinear Anal. Theory Methods Appl. 1991, 16, 1127–1138. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R.L. Fixed Point Theory for Lipschitzian-Type Mappings with Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Chidume, C. Geometric Properties of Banach Spaces and Nonlinear Iterations; Springer: London, UK, 2009. [Google Scholar]
- Pisier, G. Martingales with values in uniformly convex spaces. Isr. J. Math. 1975, 20, 326–350. [Google Scholar] [CrossRef]
- Chatterji, S.D. A principle of subsequence in probability theory: The central limit theorem. Adv. Math. 1974, 13, 31–54. [Google Scholar] [CrossRef] [Green Version]
- Suchanek, A.M. On Almost Sure Convergence of Cesaro Averages of Subsequences of Vector-Valued Functions. J. Multivar. Anal. 1978, 8, 589–597. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehaj, A.; Guessous, M. A Proof of Komlós Theorem for Super-Reflexive Valued Random Variables. Axioms 2020, 9, 106. https://doi.org/10.3390/axioms9030106
Dehaj A, Guessous M. A Proof of Komlós Theorem for Super-Reflexive Valued Random Variables. Axioms. 2020; 9(3):106. https://doi.org/10.3390/axioms9030106
Chicago/Turabian StyleDehaj, Abdessamad, and Mohamed Guessous. 2020. "A Proof of Komlós Theorem for Super-Reflexive Valued Random Variables" Axioms 9, no. 3: 106. https://doi.org/10.3390/axioms9030106
APA StyleDehaj, A., & Guessous, M. (2020). A Proof of Komlós Theorem for Super-Reflexive Valued Random Variables. Axioms, 9(3), 106. https://doi.org/10.3390/axioms9030106