Some New Results on a Three-Step Iteration Process
Abstract
:1. Introduction
2. Preliminaries
3. Convergence Results in Banach Spaces
4. Numerical Example and Rate of Convergence
5. Application
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Caccioppoli, R. Un teorema generale sull’ esistenza di elementi uniti in una transformazione funzionale. Rend. Accad. Lincei 1930, 11, 794–799. [Google Scholar]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef] [Green Version]
- Gohde, D. Zum Prinzip der Kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Kirk, W.A. A fixed point theorem for mappings which do not increase distance. Am. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized non-expansive mapping. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Usurelu, G.I.; Bejenaru, A.; Postolache, M. Operators with property (E) as concerns numerical anaysis and visualization. Numer. Func. Anal. Optim. 2020. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regon, D.; Sahu, D.R. Iterative construction of fixed points of nearly asymtotically non-expansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Math. Vesnik 2014, 66, 223–234. [Google Scholar]
- Thakur, B.S.; Thakur, D.; Postolache, M. New iteration scheme for numerical reckoning fixed points of nonexpansive mappings. J. Inequal. Appl. 2014, 2014, 328. [Google Scholar] [CrossRef] [Green Version]
- Maniu, G. On a three-step iteration process for Suzuki mappings with qualitative study. Numer. Funct. Anal. Optim. 2020. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Fixed Point Theory for Lipschitzian-Type Mappings with Applications Series; Topological Fixed Point Theory and Its Applications; Springer: New York, NY, USA, 2009; Volume 6. [Google Scholar]
- Takahashi, W. Nonlinear Functional Analysis; Yokohoma Publishers: Yokohoma, Japan, 2000. [Google Scholar]
- Clarkson, J.A. Uniformly convex spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [Google Scholar] [CrossRef]
- Opial, Z. Weak and strong convergence of the sequence of successive approximations for non-expansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Schu, J. Weak and strong convergence to fixed points of asymptotically non-expansive mappings. Bull. Austral. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Senter, H.F.; Dotson, W.G. Approximating fixed points of non-expansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algor. 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Prob. 2002, 18, 411–453. [Google Scholar] [CrossRef]
- Feng, M.; Shi, L.; Chen, R. A new three-step iterative algorithm for solving the split feasibility problem. Univ. Politeh. Buch. Ser. A 2019, 81, 93–102. [Google Scholar]
- Xu, H.K. A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 2006, 22, 2021–2034. [Google Scholar] [CrossRef]
- Xu, H.K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 2010, 26, 105018. [Google Scholar] [CrossRef]
Three-Step Thakur | Three-Step Abbas | Three-Step Noor | |
---|---|---|---|
0.5 | 0.5 | 0.5 | |
0.329178000000000 | 0.354592000000000 | 0.354888000000000 | |
0.216716311368000 | 0.251470972928000 | 0.251890985088000 | |
0.142676483886991 | 0.178339190464970 | 0.178786175831820 | |
0.093931919225903 | 0.126475300450709 | 0.126898136737206 | |
0.061840642613889 | 0.089694259474836 | 0.090069251900787 | |
0.040713158108709 | 0.063609733711402 | 0.063928993337133 | |
0.026803751919817 | 0.045111005392387 | 0.045375265174857 | |
0.017646410898923 | 0.031992003248194 | 0.032206274214749 | |
0.011617620493771 | 0.022688216831560 | 0.022859240487047 | |
0.007648530157797 | 0.016090120365478 | 0.016224940275934 | |
0.005035455720566 | 0.011410855921271 | 0.011516073209292 | |
0.003315122486369 | 0.008092396445671 | 0.008173832378198 | |
0.002182530779636 | 0.005738998080926 | 0.005801590050068 | |
0.000261903693556 | 0.004070005615023 | 0.004117829379377 | |
0 | 0.002886382862085 | 0.002922736465576 | |
0 | 0.002046976543664 | 0.002074488197591 | |
0 | 0 | 0.000311173229638 |
Number of Iterates Required to Reach Fixed Point. | |||
---|---|---|---|
Initial Points | Three-Step Noor | Three-Step Abbas | Three-Step Thakur |
0.10 | 23 | 15 | 13 |
0.25 | 26 | 18 | 16 |
0.50 | 27 | 21 | 17 |
0.75 | 28 | 22 | 18 |
0.95 | 29 | 23 | 19 |
Number of Iterates Required to Reach Fixed Point. | |||
---|---|---|---|
Initial Points | Three-Step Noor | Three-Step Abbas | Three-Step Thakur |
0.10 | 18 | 11 | 10 |
0.25 | 19 | 14 | 11 |
0.50 | 20 | 16 | 12 |
0.75 | 20 | 17 | 13 |
0.95 | 20 | 17 | 13 |
Number of Iterates Required to Reach Fixed Point. | |||
---|---|---|---|
Initial Points | Three-Step Noor | Three-Step Abbas | Three-Step Thakur |
0.10 | 24 | 15 | 13 |
0.25 | 25 | 18 | 16 |
0.50 | 25 | 20 | 17 |
0.75 | 25 | 21 | 18 |
0.95 | 25 | 22 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, K.; Ahmad, J.; de la Sen, M. Some New Results on a Three-Step Iteration Process. Axioms 2020, 9, 110. https://doi.org/10.3390/axioms9030110
Ullah K, Ahmad J, de la Sen M. Some New Results on a Three-Step Iteration Process. Axioms. 2020; 9(3):110. https://doi.org/10.3390/axioms9030110
Chicago/Turabian StyleUllah, Kifayat, Junaid Ahmad, and Manuel de la Sen. 2020. "Some New Results on a Three-Step Iteration Process" Axioms 9, no. 3: 110. https://doi.org/10.3390/axioms9030110
APA StyleUllah, K., Ahmad, J., & de la Sen, M. (2020). Some New Results on a Three-Step Iteration Process. Axioms, 9(3), 110. https://doi.org/10.3390/axioms9030110