On the Periodicity of General Class of Difference Equations
Abstract
:1. Introduction
2. Existence and Nonexistence of a Periodic Solutions
2.1. Existence of Periodic Solutions of Period Two
2.2. Nonexistence of Periodic Solutions of Period Two
3. Application and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Abdelrahman, M.A.E.; Chatzarakis, G.E.; Li, T.; Moaaz, O. On the difference equation wn + 1 = awn − l + bwn − k + f(wn − l, wn − k). Adv. Differ. Equ. 2018, 431, 2018. [Google Scholar]
- Abdelrahman, M.A.E. On the difference equation zm + 1 = f(zm, zm − 1, …, zm − k). J. Taibah Univ. Sci. 2019, 13, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Elsayed, E.M. Periodicity and stability of solutions of higher order rational difference equation. Adv. Stud. Contemp. Math. 2008, 17, 181–201. [Google Scholar]
- Ahlbrandt, C.D.; Peterson, A.C. Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Ahmad, S. On the nonautonomous Volterra-Lotka competition equations. Proc. Am. Math. Soc. 1993, 117, 199–204. [Google Scholar] [CrossRef]
- Allman, E.S.; Rhodes, J.A. Mathematical Models in Biology: An Introduction; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Andres, J.; Pennequin, D. Note on Limit-Periodic Solutions of the Difference Equation wt + 1 − [h(wt) + λ]w = rt,λ > 1. Axioms 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Din, Q.; Elsayed, E.M. Stability analysis of a discrete ecological model. Comput. Ecol. Softw. 2014, 4, 89–103. [Google Scholar]
- Grove, E.A.; Ladas, G. Periodicities in Nonlinear Difference Equations; Chapman & Hall/CRC: Boca Raton, FL, USA, 2005; Volume 4. [Google Scholar]
- El-Dessoky, M.M. On the difference equation wn + 1 = awn − l + bwn − k + cwn − s/ (dwn − s−e). Math. Meth. Appl. Sci. 2017, 40, 535–545. [Google Scholar] [CrossRef]
- Elettreby, M.F.; El-Metwally, H. On a system of difference equations of an economic model. Discrete Dyn. Nat. Soc. 2013, 6, 405628. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, E.M. New method to obtain periodic solutions of period two and three of a rational difference equation. Nonlinear Dyn. 2015, 79, 241–250. [Google Scholar] [CrossRef]
- Elsayed, E.M.; El-Dessoky, M.M. Dynamics and behavior of a higher order rational recursive sequence. Adv. Differ. Equ. 2012, 2012, 69. [Google Scholar] [CrossRef] [Green Version]
- Foupouagnigni, M.; Mboutngam, S. On the Polynomial Solution of Divided-Difference Equations of the Hypergeometric Type on Nonuniform Lattices. Axioms 2019, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Foupouagnigni, M.; Koepf, W.; Kenfack-Nangho, M.; Mboutngam, S. On Solutions of Holonomic Divided-Difference Equations on Nonuniform Lattices. Axioms 2013, 2, 404–434. [Google Scholar] [CrossRef] [Green Version]
- Gil, M. Solution Estimates for the Discrete Lyapunov Equation in a Hilbert Space and Applications to Difference Equations. Axioms 2019, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, A.M.; Mishev, D.P. Difference and Differential Equations with Applications in Queueing Theory; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kalabusic, S.; Kulenovic, M.R.S. On the recursive sequnence wn + 1 = (αwn − 1 + βwn − 2)/ (γwn − 1 + δwn − 2). J. Differ. Equ. Appl. 2003, 9, 701–720. [Google Scholar]
- Kelley, W.G.; Peterson, A.C. Difference Equations: An Introduction with Applications, 2nd ed.; Harcour Academic: New York, NY, USA, 2001. [Google Scholar]
- Kocic, V.L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Kulenovic, M.R.S.; Ladas, G. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Liu, X. A note on the existence of periodic solutions in discrete predator-prey models. Appl. Math. Model. 2010, 34, 2477–2483. [Google Scholar] [CrossRef]
- Migda, M.; Migda, J. Nonoscillatory Solutions to Second-Order Neutral Difference Equations. Symmetry 2018, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O. Comment on new method to obtain periodic solutions of period two and three of a rational difference equation. Nonlinear Dyn. 2017, 88, 1043–1049. [Google Scholar] [CrossRef]
- Moaaz, O. Dynamics of difference equation wn + 1 = f(wn − l, wn − k). Adv. Differ. Equ. 2018, 447, 2018. [Google Scholar]
- Moaaz, O.; Chalishajar, D.; Bazighifan, O. Some Qualitative Behavior of Solutions of General Class of Difference Equations. Mathematics 2019, 7, 585. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Chatzarakis, G.E.; Chalishajar, D.; Bazighifan, O. Dynamics of General Class of Difference Equations and Population Model with Two Age Classes. Mathematics 2020, 8, 516. [Google Scholar] [CrossRef] [Green Version]
- Pogrebkov, A. Hirota Difference Equation and Darboux System: Mutual Symmetry. Symmetry 2019, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Stevic, S. A note on periodic character of a difference equation. J. Differ. Equ. Appl. 2004, 10, 929–932. [Google Scholar] [CrossRef]
- Stevic, S. On the recursive sequance wn + 1 = α + /. J. Appl. Math. Comput. 2005, 18, 229–234. [Google Scholar]
- Stevic, S. A short proof of the Cushing–Henson conjecture. Discrete Dyn. Nat. Soc. 2006, 4, 37264. [Google Scholar] [CrossRef]
- Stevic, S. Global stability and asymptotics of some classes of rational difference equations. J. Math. Anal. Appl. 2006, 316, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Stevic, S. Asymptotics of some classes of higher order difference equations. Discrete Dyn. Nat. Soc. 2007, 2007, 56813. [Google Scholar] [CrossRef]
- Stevic, S. Asymptotic periodicity of a higher order difference equation. Discrete Dyn. Nat. Soc. 2007, 2007, 13737. [Google Scholar] [CrossRef] [Green Version]
- Stevic, S. Existence of nontrivial solutions of a rational difference equation. Appl. Math. Lett. 2007, 20, 28–31. [Google Scholar] [CrossRef] [Green Version]
- Stevic, S. On the Recursive Sequence yn + 1 = A + (yn/yn −1 )p. Discrete Dyn. Nat. Soc. 2007, 2007, 34517. [Google Scholar]
- Stevic, S.; Kent, C.; Berenaut, S. A note on positive nonoscillatory solutions of the differential equation wn + 1 = α + /. J. Diff. Equ. Appl. 2006, 12, 495–499. [Google Scholar]
- Taskara, N.; Uslu, K.; Tollu, D.T. The periodicity and solutions of the rational difference equation with periodic coefficients. Comput. Math. Appl. 2011, 62, 1807–1813. [Google Scholar] [CrossRef] [Green Version]
- Yang, C. Positive Solutions for a Three-Point Boundary Value Problem of Fractional Q-Difference Equations. Symmetry 2018, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Zou, X. Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett. 2003, 16, 165–171. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Mahjoub, H.; Muhib, A. On the Periodicity of General Class of Difference Equations. Axioms 2020, 9, 75. https://doi.org/10.3390/axioms9030075
Moaaz O, Mahjoub H, Muhib A. On the Periodicity of General Class of Difference Equations. Axioms. 2020; 9(3):75. https://doi.org/10.3390/axioms9030075
Chicago/Turabian StyleMoaaz, Osama, Hamida Mahjoub, and Ali Muhib. 2020. "On the Periodicity of General Class of Difference Equations" Axioms 9, no. 3: 75. https://doi.org/10.3390/axioms9030075
APA StyleMoaaz, O., Mahjoub, H., & Muhib, A. (2020). On the Periodicity of General Class of Difference Equations. Axioms, 9(3), 75. https://doi.org/10.3390/axioms9030075