On the Triple Lauricella–Horn–Karlsson q-Hypergeometric Functions
Abstract
:1. Introduction
2. Definitions
3. -Integral Representations
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Ernst, T. Multiple q-hypergeometric transformations involving q-integrals. In Proceedings of the 9th Annual Conference of the Society for Special Functions and their Applications (SSFA), Gwalior, India, 21–23 June 2010; Volume 9, pp. 91–99. [Google Scholar]
- Ernst, T. On the symmetric q-Lauricella functions. Proc. Jangjeon Math. Soc. 2016, 19, 319–344. [Google Scholar]
- Ernst, T. On Eulerian q-integrals for single and multiple q-hypergeometric series. Commun. Korean Math. Soc. 2018, 33, 179–196. [Google Scholar]
- Ernst, T. On various formulas with q-integrals and their applications to q-hypergeometric functions. Eur. J. Pure Appl. Math. 2020. [Google Scholar]
- Ernst, T. Further Results on Multiple q–Eulerian Integrals for Various q–Hypergeometric Functions; Publications de l’Institut Mathématique: Beograd, Serbia, 2020. [Google Scholar]
- Horn, J. Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen. Math. Ann. 1889, XXXIV, 577–600. [Google Scholar]
- Karlsson, P.W. Regions of convergence for hypergeometric series in three variables. Math. Scand. 1974, 34, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Saran, S. Transformations of certain hypergeometric functions of three variables. Acta Math. 1955, 93, 293–312. [Google Scholar] [CrossRef]
- Srivastava, K.J. On certain hypergeometric Integrals. Ganita 1956, 7, 13–28. [Google Scholar]
- Horn, J. Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann. 1931, 105, 381–407. [Google Scholar] [CrossRef]
- Dwivedi, R.; Sahai, V. On the hypergeometric matrix functions of several variables. J. Math. Phys. 2018, 59, 023505. [Google Scholar] [CrossRef]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Ernst, T. Convergence aspects for q-Appell functions I. J. Indian Math. Soc. New Ser. 2014, 81, 67–77. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood: New York, NY, USA, 1985. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ernst, T. On the Triple Lauricella–Horn–Karlsson q-Hypergeometric Functions. Axioms 2020, 9, 93. https://doi.org/10.3390/axioms9030093
Ernst T. On the Triple Lauricella–Horn–Karlsson q-Hypergeometric Functions. Axioms. 2020; 9(3):93. https://doi.org/10.3390/axioms9030093
Chicago/Turabian StyleErnst, Thomas. 2020. "On the Triple Lauricella–Horn–Karlsson q-Hypergeometric Functions" Axioms 9, no. 3: 93. https://doi.org/10.3390/axioms9030093
APA StyleErnst, T. (2020). On the Triple Lauricella–Horn–Karlsson q-Hypergeometric Functions. Axioms, 9(3), 93. https://doi.org/10.3390/axioms9030093