Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bennett, C.; Sharpley, R. Interpolation of Operators; Academic Press: London, UK, 1998. [Google Scholar]
- Ruel, J.J.; Ayres, M.P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 1999, 14, 361–366. [Google Scholar] [CrossRef]
- Tomar, M.; Agarwal, P.; Jleli, M.; Samet, B. Certain Ostrowski type inequalities for generalized s-convex functions. J. Nonlinear Sci. Appl. 2017, 10, 5947–5957. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Generalized convexity and inequalities. J. Math. Anal. Appl. 2007, 335, 1294–1308. [Google Scholar] [CrossRef] [Green Version]
- Grinalatt, M.; Linnainmaa, J.T. Jensen’s Inequality, parameter uncertainty, and multiperiod investment. Rev. Asset Pricing Stud. 2011, 1, 1–34. [Google Scholar] [CrossRef]
- Bracamonte, M.; Gimménez, J.; Vivas-Cortez, M.J. Hermite–Hadamard-Fejér type inequalities for strongly (s, m)-convex functions with modulus c, in second sense. Appl. Math. Inf. Sci. 2016, 10, 2045–2053. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar]
- Dragomir, S.S. On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 4, 775–788. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite–Hadamard type for h-convex functions on linear spaces. Proyecc. J. Math. 2015, 32, 323–341. [Google Scholar] [CrossRef]
- İscan, İ. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet J. Math. Stats 2014, 43, 935–942. [Google Scholar] [CrossRef]
- İscan, İ. Hermite–Hadamard type inequalities for harmonically (α,m)-convex functions. arXiv 2015, arXiv:1307.5402v3. [Google Scholar] [CrossRef]
- İscan, İ. Ostrowski type inequalities for harmonically s-convex functions. Konuralp J. Math. 2015, 3, 63–74. [Google Scholar]
- İscan, İ.; Selim, N.; Bekar, K. Hermite–Hadamard and Simpson type inequalities for differentiable harmonically P-functions. Br. J. Math. Comput. Sci. 2014, 4, 1908–1920. [Google Scholar]
- Kashuri, A.; Liko, R. Some new fractional integral inequalities for generalized relative semi-(m-(r,h1, h2)-preinvex mappings via generalized Mittag-Leffler function. Arab J. Math. Sci. 2019. [Google Scholar] [CrossRef]
- Anastassiou, G.; Kashuri, A.; Liko, R. Local fractional integrals involving generalized strongly m-convex mappings. Arab. J. Math. 2019, 8, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A. Some new classes of non-convex functions. Nonlinear Funct. Anal. Appl. 2006, 11, 165–171. [Google Scholar]
- Vivas-Cortez, M.; García, C.; Kashuri, A.; Hernández Hernández, J.E. New Ostrowski Type Inequalities for Coordinated (s,m)-Convex Functions in the Second Sense. Appl. Math. Inf. Sci. 2019, 13, 821–829. [Google Scholar]
- Vivas Cortez, M. Féjer type inequalities for (s, m)-convex functions in Second Sense. Appl. Math. Inf. Sci. 2016, 10, 1689–1696. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; García, C. Ostrowski Type inequalities for functions whose derivatives are (m, h1, h2)-convex. Appl. Math. Inf. Sci. 2017, 11, 79–86. [Google Scholar] [CrossRef]
- Vivas, M.; Hernández Hernández, J.E.; Merentes, N. New Hermite–Hadamard and Jensen type inequalities for h-convex functions on fractal sets. Rev. Colomb. Mat. 2016, 50, 145–164. [Google Scholar] [CrossRef]
- Vivas Cortez, M. Relative strongly h-convex functions and integral inequalities. Appl. Math. Inf. Sci. Lett. 2016, 4, 39–45. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions. Symmetry 2019, 11, 1513. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Oliveros, Y.; Vivas-Cortez, M. Ostrowski type inequalities for functions whose second derivative are convex generalized. Appl. Math. Inf. Sci. 2018, 12, 1055–1064. [Google Scholar]
- Vivas-Cortez, M.; Rangel-Oliveros, Y. An Inequality Related to s-ϕ-Convex Functions. Appl. Math. Inf. Sci. 2020, 14, 151–154. [Google Scholar]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Some Inequalities Using Generalized Convex Functions in Quantum Analysis. Symmetry 2019, 11, 1402. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.L.W.V. Om konvexe Funktioner og Uligheder mellen Middelvaerdier. Nyt Tidsskr. Math. 1905, 16, 49–69. [Google Scholar]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inegalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Hernández Hernández, J.E. Some fractional integral inequalities of Hermite Hadamard and Minkowski type. Sel. Mat. Univ. TRujillo Perú 2019, 6, 41–48. [Google Scholar]
- Sambandham, S.; Vatsala, A.S. Basic Results for Sequential Caputo Fractional Differential Equations. Mathematics 2015, 3, 76–91. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I.; Almohsen, B.A. Two dimensional extensions of Hermite–-Hadamard’s inequalities via preinvex functions. Rev. R. Acad. Cienc. Exactas Fìs. Nat. Ser. A Mat. 2019, 113, 541–555. [Google Scholar] [CrossRef]
- Sarikaya, M.Z. On the Hermite–Hadamard–type inequalities for co-ordinated convex function via fractional integrals. Integr. Transf. Spec. Func. 2014, 25, 134–147. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. The Hadamard’s inequality for s-convex function of 2-variables on the coordinates. Int. J. Math. Anal. 2008, 2, 629–638. [Google Scholar]
- Bai, S.P.; Qi, F. Some inequalities for (s1,m1)-(s2,m2)-convex functions on the co–ordinates. Glob. J. Math. Anal. 2013, 1, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.A.; Dragomir, S.S. Some Hermite–Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates. Facta Univ. Ser. Math. Inf. 2013, 28, 257–270. [Google Scholar]
- Mihai, M.V. New inequalities for co–ordinated convex functions via Riemann–Liouville fractional calculus. Tamkang J. Math. 2014, 45, 285–296. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Integral inequalities for coordinated harmonically convex functions. Complex Var. Elliptic Equat. 2015, 60, 776–786. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2015, 21, 191–203. [Google Scholar]
- Vivas-Cortez, M.J.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. New quantum estimates of trapezium–type inequalities for generalized ϕ-convex functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernández, J.E.H. Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions. Axioms 2020, 9, 117. https://doi.org/10.3390/axioms9040117
Vivas-Cortez M, Kashuri A, Liko R, Hernández JEH. Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions. Axioms. 2020; 9(4):117. https://doi.org/10.3390/axioms9040117
Chicago/Turabian StyleVivas-Cortez, Miguel, Artion Kashuri, Rozana Liko, and Jorge Eliecer Hernández Hernández. 2020. "Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions" Axioms 9, no. 4: 117. https://doi.org/10.3390/axioms9040117
APA StyleVivas-Cortez, M., Kashuri, A., Liko, R., & Hernández, J. E. H. (2020). Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions. Axioms, 9(4), 117. https://doi.org/10.3390/axioms9040117