On the Bernstein Affine Fractal Interpolation Curved Lines and Surfaces
Abstract
:1. Introduction
2. Iterated Function System and Scaling
3. Fractal Interpolation Functions
4. Affine Fif
4.1. Inscribing Affine Fif in a Rectangle
4.2. Existence of Optimal Affine Fif
4.3. Convergence of Affine Fif
5. Bernstein Affine Fif
6. Bernstein Affine Fis
Convergence of Bernstein affine FIS
7. Discussion
8. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hutchinson, J.E. Fractals and self similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractals Everywhere, 3rd ed.; Dover Publications, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Maragos, P. Fractal aspects of speech signals: Dimension and interpolation. In Proceedings of the ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing, Toronto, ON, Canada, 14–17 April 1991; Volume 1, pp. 417–420. [Google Scholar]
- Chand, A.K.B.; Kapoor, G.P. Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 2006, 44, 655–676. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, P.; Chand, A.K.B.; Navascués, M.A. Fractal perturbation preserving fundamental shapes: Bounds on the scale factors. J. Math. Anal. Appl. 2014, 419, 804–817. [Google Scholar] [CrossRef]
- Vijender, N. Bernstein fractal trigonometric approximation. Acta Appl. Math. 2018, 159, 11–27. [Google Scholar] [CrossRef]
- Ali, M.; Clarkson, T.G. Using linear fractal interpolation functions to compress video images. Fractals 1994, 2, 417–421. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractal image compression. Not. Am. Math. Soc. 1996, 43, 657–662. [Google Scholar]
- Craciunescu, O.I.; Das, S.K.; Poulson, J.M.; Samulski, T.V. Three dimensional tumor perfusion reconstruction using fractal interpolation functions. IEEE Trans. Biomed. Eng. 2001, 48, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Mazel, D.S.; Hayes, M.H. Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 1992, 40, 1724–1734. [Google Scholar] [CrossRef]
- Dillon, S.; Drakopoulos, V. On Self-Affine and Self-Similar Graphs of Fractal Interpolation Functions Generated from Iterated Function Systems. In Fractal Analysis: Applications in Health Sciences and Social Sciences; Brambila, F., Ed.; Intech: Rijeka, Croatia, 2017; Chapter 9; pp. 187–205. [Google Scholar] [CrossRef] [Green Version]
- Ri, S.; Drakopoulos, V. How are fractal interpolation functions related to several contractions? In Mathematical Theorems; Alexeyeva, L., Ed.; Intech: Rijeka, Croatia, 2020. [Google Scholar]
- Navascués, M.A.; Sebastián, M.V. Construction of affine fractal functions close to classical interpolants. J. Comput. Anal. Appl. 2007, 9, 271–285. [Google Scholar]
- Navascués, M.A. Fractal approximation. Complex Anal. Oper. Theory 2010, 4, 953–974. [Google Scholar] [CrossRef]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Dalla, L.; Drakopoulos, V. On the parameter identification problem in the plane and the polar fractal interpolation functions. J. Approx. Theory 1999, 101, 290–303. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, P.; Chand, A.K.B. Fractal rational functions and their approximation properties. J. Approx. Theory 2014, 185, 31–50. [Google Scholar] [CrossRef]
- Davide, L.T.; Matteo, R. Approximating continuous functions by iterated function systems and optimization problems. Int. Math. J. 2002, 2, 801–811. [Google Scholar]
- Gal, S.G. Shape-Preserving Approximation by Real and Complex Polynomials; Birkhäuser: Boston, MA, USA, 2010. [Google Scholar]
- Vijender, N.; Chand, A.K.B. Shape preserving affine fractal interpolation surfaces. Nonlinear Stud. 2014, 21, 175–190. [Google Scholar]
- Casciola, G.; Romani, L. Rational Interpolants with Tension Parameters. In Curve and Surface Design: Saint-Malo 2002; Lyche, T., Mazure, M.-L., Schumaker, L.L., Eds.; Nashboro Press: Brentwood, Los Angeles, CA, USA, 2003; pp. 41–50. [Google Scholar]
−4 | −3 | −2 | −1 | |
---|---|---|---|---|
0.1 | 2 | 12 | 9 | 7 |
0.2 | 7 | 3 | 1 | 2 |
0.3 | 8 | 3 | 9 | 8 |
0.8 | 2 | 3 | 6 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijender, N.; Drakopoulos, V. On the Bernstein Affine Fractal Interpolation Curved Lines and Surfaces. Axioms 2020, 9, 119. https://doi.org/10.3390/axioms9040119
Vijender N, Drakopoulos V. On the Bernstein Affine Fractal Interpolation Curved Lines and Surfaces. Axioms. 2020; 9(4):119. https://doi.org/10.3390/axioms9040119
Chicago/Turabian StyleVijender, Nallapu, and Vasileios Drakopoulos. 2020. "On the Bernstein Affine Fractal Interpolation Curved Lines and Surfaces" Axioms 9, no. 4: 119. https://doi.org/10.3390/axioms9040119
APA StyleVijender, N., & Drakopoulos, V. (2020). On the Bernstein Affine Fractal Interpolation Curved Lines and Surfaces. Axioms, 9(4), 119. https://doi.org/10.3390/axioms9040119