Inverse Problem for a Mixed Type Integro-Differential Equation with Fractional Order Caputo Operators and Spectral Parameters
Abstract
:1. Introduction
2. Statement of the Problem
3. Expansion of the Solution of the Direct Problem (1)–(4) into Fourier Series
4. Redefinition Functions
5. Unique Solvability of CSNIE (41)
6. Convergence of Fourier Series (57)
7. Continuous Dependence of Solution on the Small Parameter
8. Conclusions and Statement of the Theorem
Author Contributions
Funding
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Mainardi, F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Wien, Austria, 1997. [Google Scholar]
- Area, I.; Batarfi, H.; Losada, J.; Nieto, J.J.; Shammakh, W.; Torres, A. On a fractional order Ebola epidemic model. Adv. Differ. Equ. 2015, 278. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Baleanu, D.; Adeel, M. Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model. Adv. Differ. Equ. 2020, 384. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Khan, M.A.; Farooq, M.; Hammouch, Z.; Baleanu, D. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 975–993. [Google Scholar] [CrossRef] [Green Version]
- Tenreiro Machado, J.A. Handbook of Fractional Calculus with Applications in 8 Volumes; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar]
- Kumar, D.; Baleanu, D. Fractional Calculus and Its Applications in Physics. Front. Phys. 2019, 7, 81. [Google Scholar] [CrossRef]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Saxena Ram, K.; Garra, R.; Orsingher, E. Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives. Integral Transform. Spec. Funct. 2015, 27, 30–42. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. 2020, 476, 2234. [Google Scholar] [CrossRef] [Green Version]
- Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Ž. Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Tenreiro Machado, J.A. (Ed.) Handbook of Fractional Calculus with Applications; Walter de Gruyter GmbH: Berlin, Germany, 2019; Volume 8. [Google Scholar]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000. [Google Scholar]
- Hilfer, R. On fractional relaxation. Fractals 2003, 11, 251–257. [Google Scholar] [CrossRef]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics, Recent Advances; World Scientific: Singapore, 2011; Chapter 9. [Google Scholar]
- Sandev, T.; Tomovski, Z. Fractional Equations and Models: Theory and Applications; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Xu, C.; Yu, Y.; Chen, Y.Q.; Lu, Z. Forecast analysis of the epidemic trend of COVID-19 in the United States by a generalized fractional-order SEIR model. medRxiv 2020. [Google Scholar] [CrossRef]
- Cesarano, C. Generalized special functions in the description of fractional diffusive equations. Commun. Appl. Ind. Math. 2019, 10, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Assante, D.; Cesarano, C.; Fornaro, C.; Vazquez, L. Higher Order and Fractional Diffusive Equations. J. Eng. Sci. Technol. Rev. 2015, 8, 202–204. [Google Scholar] [CrossRef]
- Dattoli, G.; Cesarano, C.; Ricci, P.; Vazquez, L. Special Polynomials and Fractional Calculus. Math. Comput. Model. 2003, 37, 729–733. [Google Scholar] [CrossRef]
- Restrepo, J.; Ruzhansky, M.; Suragan, D. Explicit representations of solutions for linear fractional differential equations with variable coefficients. arXiv 2020, arXiv:2006.1535v1. [Google Scholar]
- Gel’fand, I.M. Some questions of analysis and differential equations. Uspekhi Mat. Nauk. 1959, 14, 3–19. (In Russian) [Google Scholar]
- Uflyand, Y.S. On oscillation propagation in compound electric lines. Inzhenerno-Phizicheskiy Zhurnal 1964, 7, 89–92. (In Russian) [Google Scholar]
- Terlyga, O.; Bellout, H.; Bloom, F. A hyperbolic-parabolic system arising in pulse combustion: Existence of solutions for the linearized problem. Electron. J. Differ. Equ. 2013, 2013, 1–42. [Google Scholar]
- Abdullaev, O.K.; Sadarangani, K. Nonlocal problems with integral gluing condition for loaded mixed type equations involving the Caputo fractional derivative. Electron. J. Differ. Equ. 2016, 2016, 1–10. Available online: http://ejde.math.txstate.edu (accessed on 25 September 2020).
- Agarwal, P.; Berdyshev, A.S.; Karimov, E.T. Solvability of a nonlocal problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 2017, 71, 1235–1257. [Google Scholar] [CrossRef]
- Zarubin, A.N. Boundary value problem for a differential-difference mixed-compound equation with fractional derivative and with functional delay and advance. Differ. Equ. 2019, 55, 220–230. [Google Scholar] [CrossRef]
- Karimov, E.T.; Al-Salti, N.; Kerbal, S. An inverse source non-local problem for a mixed type equation with a Caputo fractional differential operator. East Asian J. Appl. Math. 2017, 7, 417–438. [Google Scholar] [CrossRef]
- Karimov, E.T.; Kerbal, S.; Al-Salti, N. Inverse Source Problem for Multi-Term Fractional Mixed Type Equation. In Advanes in Real and Complex Analysis with Applications; Springer Nature Singapore Pte Ltd.: Singapore, 2017; pp. 289–301. [Google Scholar] [CrossRef]
- Repin, O.A. Nonlocal problem with Saigo operators for mixed type equation of the third order. Russ. Math. 2019, 63, 55–60. [Google Scholar] [CrossRef]
- Repin, O.A. On a problem for a mixed-type equation with fractional derivative. Russ. Math. 2018, 62, 38–42. [Google Scholar] [CrossRef]
- Salakhitdinov, M.S.; Karimov, E.T. Uniqueness of an inverse source non-local problem for fractional order mixed type equations. Eurasian Math. J. 2016, 7, 74–83. Available online: http://mi.mathnet.ru/rus/emj/v7/i1/p74 (accessed on 25 September 2020).
- Yuldashev, T.K.; Kadirkulov, B.J. Boundary value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator. Axioms 2020, 9, 68. [Google Scholar] [CrossRef]
- Yuldashev, T.K.; Kadirkulov, B.J. Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator. Ural Math. J. 2020, 6, 153–167. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel. Differ. Equ. 2018, 54, 1646–1653. [Google Scholar] [CrossRef]
- Yuldashev, T.K. On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel. Comput. Math. Math. Phys. 2019, 59, 241–252. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Spectral features of the solving of a Fredholm homogeneous integro-differential equation with integral conditions and reflecting deviation. Lobachevskii J. Math. 2019, 40, 2116–2123. [Google Scholar] [CrossRef]
- Yuldashev, T.K. On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument. Lobachevskii J. Math. 2020, 41, 111–123. [Google Scholar] [CrossRef]
- Yuldashev, T.K. On an integro-differential equation of pseudoparabolic-pseudohyperbolic type with degenerate kernels. Proc. YSU Phys. Math. Sci. 2018, 52, 19–26. Available online: http://mi.mathnet.ru/rus/uzeru/v52/i1/p1914 (accessed on 25 September 2020). [CrossRef]
- Yuldashev, T.K. Nonlocal inverse problem for a pseudohyperbolic-pseudoelliptic type integro-differential equations. Axioms 2020, 9, 45. [Google Scholar] [CrossRef]
- Dubey, R.; Mishra, L.N.; Cesarano, C. Multiobjective fractional symmetric duality in mathematical programming with (C,Gf)-invexity assumptions. Axioms 2019, 8, 97. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuldashev, T.K.; Karimov, E.T. Inverse Problem for a Mixed Type Integro-Differential Equation with Fractional Order Caputo Operators and Spectral Parameters. Axioms 2020, 9, 121. https://doi.org/10.3390/axioms9040121
Yuldashev TK, Karimov ET. Inverse Problem for a Mixed Type Integro-Differential Equation with Fractional Order Caputo Operators and Spectral Parameters. Axioms. 2020; 9(4):121. https://doi.org/10.3390/axioms9040121
Chicago/Turabian StyleYuldashev, Tursun K., and Erkinjon T. Karimov. 2020. "Inverse Problem for a Mixed Type Integro-Differential Equation with Fractional Order Caputo Operators and Spectral Parameters" Axioms 9, no. 4: 121. https://doi.org/10.3390/axioms9040121
APA StyleYuldashev, T. K., & Karimov, E. T. (2020). Inverse Problem for a Mixed Type Integro-Differential Equation with Fractional Order Caputo Operators and Spectral Parameters. Axioms, 9(4), 121. https://doi.org/10.3390/axioms9040121