Approximate Solutions of the Model Describing Fluid Flow Using Generalized ρ-Laplace Transform Method and Heat Balance Integral Method
Abstract
:1. Introduction
2. Basic Definitions on Fractional Derivations and Their Generalizations
3. Model Presentation and Work Project
4. Fundamental Qualitative Properties of the Solutions
5. Description of Proposed Solution Methods
5.1. Heat Balance Integral Method (HBIM)
5.2. -Homotopy Perturbation Laplace Transformation
6. Procedure Solutions
7. Graphics and Discussions
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2011, 193, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Darzi, R.; Agheli, B. An analytical approach for systems of fractional differential equations by means of the innovative homotopy perturbation method. Math. Moravica 2018, 22, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M.; Ozdemir, N. European vanilla option pricing model of fractional order without singular kernel. Fractal Fract. 2018, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Bas, E.; Acay, B.; Ozarslan, R. The price adjustment equation with different types of conformable derivatives in market equilibrium. AIMS Math. 2019, 47, 805. [Google Scholar] [CrossRef]
- Yavuz, M.; Bonyah, E. New approaches to the fractional dynamics of schistosomiasis disease model. Phys. A Stat. Mech. Appl. 2019, 525, 373–393. [Google Scholar] [CrossRef]
- Naik, P.A.; Owolabi, K.M.; Yavuz, M.; Zu, J. Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Solitons Fract. 2020, 140, 110272. [Google Scholar] [CrossRef]
- Yavuz, M.; Sene, N. Stability Analysis and Numerical Computation of the Fractional Predator–Prey Model with the Harvesting Rate. Fract. Fract. 2020, 4, 35. [Google Scholar] [CrossRef]
- Yavuz, M.; Ozdemir, N. Analysis of an epidemic spreading model with exponential decay law. Math. Sci. Appl. E-Notes 2020, 8, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.D. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting. Physics 2019, 1, 40–58. [Google Scholar] [CrossRef] [Green Version]
- Hristov, J. The heat radiation diffusion equation: Explicit analytical solutions by improved integral-balance method. Ther. Sci. 2018, 22, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Khader, M.M. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 2535–2542. [Google Scholar] [CrossRef]
- Tasbozan, O.; Esen, A.; Yagmurlu, N.M.; Ucar, Y. A Numerical Solution to Fractional Diffusion Equation for Force-Free Case. Abstr. Appl. Anal. 2013, 2013, 6. [Google Scholar] [CrossRef]
- Yokus, A.; Bulut, H. On the numerical investigations to the Cahn-Allen equation by using finite difference method. Int. J. Optim. Control Theor. Appl. 2018, 9, 18–23. [Google Scholar] [CrossRef]
- Sene, N. Second-grade fluid model with Caputo–Liouville generalized fractional derivative. Chaos Solitons Fract. 2020, 133, 109631. [Google Scholar] [CrossRef]
- Pendra, S.K.; Abdeljawad, T.; Ravichandran, C.; Jarad, F. A complex valued approach to the solution of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method. Chaos Solitons Fract. 2020, 130, 109439. [Google Scholar]
- Evirgen, F.; Yavuz, M. An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative. ITM Web Conf. 2018, 22, 01009. [Google Scholar] [CrossRef] [Green Version]
- Usta, F.; Budak, H.; Sarikaya, M.Z. Yang-Laplace Transform Method Volterra and Abels Integro-Differential Equations of Fractional Order. Int. J. Nonlinear Anal. Appl. 2017, 9, 203–214. [Google Scholar]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 1–15. [Google Scholar]
- Hristov, J. Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Ther. Sci. 2016, 20, 757–762. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Ther. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Abro, K.A.; Gomez-Aguilar, J.F. A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function. Eur. Phys. J. Plus 2019, 134, 101. [Google Scholar] [CrossRef]
- Yavuz, M.; Abdeljawad, T. Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel. Adv. Differ. Equ. 2020, 2020, 367. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 1999; pp. 87–130. [Google Scholar]
- Abdeljawad, T.; Al-Mdallal, Q.M. Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality. J. Comput. Appl. Math. 2018, 339, 218–230. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Discrete fractional differences with non-singular discrete Mittag-Leffler kernels. Adv. Differ. Equ. 2016, 2016, 232. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, P.H.; Liu, Q.X. Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative. Appl. Math. Mech. 2009, 30, 1533–1546. [Google Scholar] [CrossRef]
- Wu, C. Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Appl. Num. Math. 2009, 59, 2571–2583. [Google Scholar] [CrossRef]
- Ye, C.; Luo, X.; Wen, L. High-order numerical methods of fractional-order Stokes’ first problem for heated generalized second grade fluid. Appl. Math. Mech. Engl. 2012, 33, 65–80. [Google Scholar] [CrossRef]
- Hristov, J. Integral-balance solution to nonlinear subdiffusion equation. In Frontiers in Fractional Calculus, 1st ed.; Bhalekar, S., Ed.; Bentham Science Publishers: Sharjah, UAE, 2017; Volume 1, pp. 71–106. [Google Scholar]
- Hashemi, M.S.; Baleanu, D.; Haghighi, M.P. Solving the time fractional diffusion equation using a lie group integrator. Ther. Sci. 2015, 19, 77–83. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172, 65–67. [Google Scholar] [CrossRef] [Green Version]
- Delic, A. Fractional in Time Diffusion-Wave Equation and its Numerical Approximation. Filomat 2016, 30, 1375–1385. [Google Scholar] [CrossRef]
- Sene, N. Analytical solutions and numerical schemes of certain generalized fractional diffusion models. Eur. Phys. J. Plus 2019, 134, 199. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Baleanu, D.; Mallawi, F. A new numerical technique for solving fractional sub-diffusion and reaction sub-diffusion equations with a nonlinear source term. Ther. Sci. 2015, 19, 25–34. [Google Scholar] [CrossRef]
- Avci, D.; Yavuz, M.; Ozdemir, N. Fundamental Solutions to the Cauchy and Dirichlet Problems for a Heat Conduction Equation Equipped with the Caputo-Fabrizio Differentiation. In Heat Conduction: Methods, Applications and Research, 1st ed.; Hristov, J., Bennacer, R., Eds.; Nova Science Publishers: New York, NY, USA, 2019; Volume 1, pp. 95–107. [Google Scholar]
- Avci, D.; Ozdemir, N.; Yavuz, M. Fractional Optimal Control of Diffusive Transport Acting on a Spherical Region. In Methods of Mathematical Modelling: Fractional Differential Equations, 1st ed.; Singh, H., Kumar, D., Baleanu, D., Eds.; CRC Press: Boca Raton, FL, USA, 2019; Volume 1, pp. 63–82. [Google Scholar]
- Hristov, J. A transient flow of a non-newtonian fluid modelled by a mixed time-space derivative: An improved integral-balance approach. In Mathematical Methods in Engineering, 1st ed.; Tas, K., Baleanu, D., Tenreiro Machado, J.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 153–174. [Google Scholar]
- Ravichandran, C.; Logeswari, K.; Jarad, F. New results on existence in framework of Atangana-Baleanu derivative for fractional integro-differential equations. Chaos Solitons Fract. 2019, 125, 194–200. [Google Scholar] [CrossRef]
- Tomovski, Z.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Sene, N.; Srivastava, G. Generalized Mittag-Leffler input stability of the fractional differential equations. Symmetry 2019, 11, 608. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T. A modified Laplace transform for certain generalized fractional operators. Res. Nonlinear Anal. 2018, 2, 88–98. [Google Scholar]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. S 2020, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Shah, N.A.; Khan, I. Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives. Eur. Phys. J. C 2016, 76, 362. [Google Scholar] [CrossRef] [Green Version]
- Sene, N. Integral Balance Methods for Stokes’ First, Equation Described by the Left Generalized Fractional Derivative. Physics 2019, 1, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.L.; Myers, T.G. Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions. Int. J. Heat Mass Transf. 2010, 53, 3540–3551. [Google Scholar] [CrossRef] [Green Version]
- Sene, N.; Fall, A.N. Homotopy Perturbation ρ-Laplace Transform Method and Its Application to the Fractional Diffusion Equation and the Fractional Diffusion-Reaction Equation. Fract. Fract. 2019, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Myers, T.G. Optimal exponent heat balance and refined integral methods applied to Stefan problems. Int. J. Heat Mass Transf. 2010, 53, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M.; Ozdemir, N. Numerical inverse Laplace homotopy technique for fractional heat equations. Ther. Sci. 2018, 22, 185–194. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yavuz, M.; Sene, N. Approximate Solutions of the Model Describing Fluid Flow Using Generalized ρ-Laplace Transform Method and Heat Balance Integral Method. Axioms 2020, 9, 123. https://doi.org/10.3390/axioms9040123
Yavuz M, Sene N. Approximate Solutions of the Model Describing Fluid Flow Using Generalized ρ-Laplace Transform Method and Heat Balance Integral Method. Axioms. 2020; 9(4):123. https://doi.org/10.3390/axioms9040123
Chicago/Turabian StyleYavuz, Mehmet, and Ndolane Sene. 2020. "Approximate Solutions of the Model Describing Fluid Flow Using Generalized ρ-Laplace Transform Method and Heat Balance Integral Method" Axioms 9, no. 4: 123. https://doi.org/10.3390/axioms9040123
APA StyleYavuz, M., & Sene, N. (2020). Approximate Solutions of the Model Describing Fluid Flow Using Generalized ρ-Laplace Transform Method and Heat Balance Integral Method. Axioms, 9(4), 123. https://doi.org/10.3390/axioms9040123